School Planning Office Whiffer Application - Functional Requirements Description

The Whiffer is a software application that is used to simulate the effects of school attendance area boundary changes. Proposed changes are built and saved as redistricting plans. These plans are accessed by a software system that provides users reporting, display, and look-up capabilities.

Controls on the Main Application Screen

When the user starts the Whiffer by double-clicking its executable file (Whiffer.exe), the system responds by displaying the screen reproduced below.

The screen above is the only data entry screen used by the Whiffer. In its upper half, the Whiffer screen displays the data relevant to a single planning polygon, identified by the polygon number displayed in the upper left corner of the screen. The file of data underlying this display screen is essentially an electronic rolodex, organized in planning polygon order.

The boxed set of navigation buttons (First/Prev./Next/Last) in the middle of the screen move the record pointer to the designated planning polygon's record and refreshes the display with its contents. To display a specific polygon's data, the user enters the desired polygon number in the blue box to the right of the Go To button and clicks the mouse over the Go To button or presses the Enter key on the keyboard twice. Since the blue polygon number box is normally the active control
on this screen, the user can rapidly move between polygons by simply entering a number on the keyboard, pressing the enter key twice, viewing the data, then repeating that sequence to view the next polygon of interest.

The first two buttons to the left of the navigation set are used to control the redistricting plan in use, i.e. which plan of many possible ones is currently being worked on. The Switch Plans button displays a prompt screen, on which the user can select a different plan to view or modify by doubleclicking on its file name (see below). Once selected, the new plan's name and the first 30-40 characters of its description are shown at the top center of the display screen.

The Start a New Plan From This One button will create an exact copy of the currently displayed plan and prompt the user to supply an eight-character name for the new plan.

The user also has the option of entering a longer text description of the new plan on the prompt screen. When the user clicks on the Create button, the new plan is created and becomes the active plan in the Whiffer, and the data from its first polygon is displayed on the screen. The user can then proceed to modify the plan as necessary to create its new look. The newly-created plan and a portion of its description are displayed at the top of the screen.

The Switch CIPs button allows the user to designate a different CIP's set of building capacities for use in all of the Whiffer's capacity utilization calculations. The user selects the desired CIP file in a manner very similar to that described above for the Switch Plans button. The selected CIP is displayed in red immediately below the Whiffer logo in the upper right corner of the display. The Quit button terminates execution of the Whiffer, closes all of its files, and removes all Whiffer displays from the computer screen.

At the top right corner of the screen, below the Whiffer logo and the CIP name, is a checkbox with which the user can specify whether or not to count kindergarten students in the various printed reports and displays that the application creates. This option was useful during the time that kindergarten was a half-day program in the HCPSS, but is less important and seldom used since the advent of full-day kindergarten. This box is normally left checked, so that kindergarten students are included in all functions of the Whiffer.

The Whiffer controls that get the most use are the three pop-up boxes to the left of the Include Kind. Checkbox, under the headings "High", "Middle", and "Elem." These data entry fields are used to assign the displayed polygon to a school's attendance area. When the user clicks on one of these boxes, the appropriate set of HCPSS schools opens as a scrolling list. The currently assigned school is highlighted in the list when it opens. The user can select a different school from the scrolling list in any of the following ways:

- scrolling the pick list display until the desired school is in view, highlighting its line in the display, and pressing the Enter key on the computer keyboard
- scrolling the pick list display until the desired school is in view and double-clicking its entry with the mouse
- typing the first few characters of the desired list entry, and pressing the Enter or Tab key when the desired entry is displayed and highlighted

The user may cancel their selection and leave the school unchanged by pressing the Esc key while the list is displayed. Changes are made directly into the displayed plan's data file as the scrolling list is closed, so there is no need for a separate step to save the user's changes.

In the bottom half of the Whiffer screen, there is a scrolling browse window with calculated data for each school. Schools are grouped by level (high, middle, elementary), and only one level is displayed at a time in this list. Along with the school name, the number of polygons assigned to

the school, the FARM percentage, the pass rates for MSA Reading and Math tests, and the capacity utilization rates for the next 12 school years is shown. This data is automatically recalculated and refreshed every time a polygon is assigned to a different school in one of the three pop-up lists. Additionally, the user can refresh the display manually by clicking on one of the "Refresh" buttons in the upper left corner of the screen, under the polygon number. Clicking one of these refresh buttons for a level of schools that is different from the level currently displayed changes the browse window to display schools of the selected level.

Menu Options at the Main Application Screen

There are several menu options available at the Whiffer screen. The File menu contains a single entry to "Quit". The Quit option terminates execution of the Whiffer, closes all of its files, and removes all Whiffer displays from the computer screen.

The Edit menu contains the standard editing options, but they are not applicable to any of the processes taking place on this screen.

The Export menu has options to export three types of data files for use in Microsoft Excel spreadsheets that are linked into the Feasibility Study document (see menu displayed below). The "Export FARM/MSA for Current Plan" option writes a spreadsheet-compatible .xls file that

Microsoft FoxPro	
File Edit	Export Reports Maintenance
,	Export FARM/MSA for current plan
	Export Feed \%
t	Export ES Redist. Effects Export MS Redist. Effects Export HS Redist. Effects

contains a summary of FARM and MSA pass rates to the directory where the Whiffer data is stored. The export routine displays a message for the user with the name of the exported file when it is finished.

The "Export Feed \%" option provides a flexible means of exporting a file of feed rates between individual schools of different levels, for use in the Feasibility Study document. The user is prompted to select the type of file to export (see prompt screen below), the grade levels of

students to be counted, and the redistricting plans to be used for each future school year. When the export is finished, a window appears with a message giving the name of the exported file.

The "Export ES Effects/Export MS Effects/Export HS Effects" set of options creates files that contain the raw data to set up the redistricting effects report for the selected level of schools in

the Feasibility Study document. The user is prompted, as shown above, to select the level of schools desired and the redistricting plan to use for each future school year.

The Reports menu contains a number of options to print redistricting plan data in various formats (see below). There is an example of each report included in Appendix A of this document.

Each of these reports is summarized in the bulleted items below:

- Polygon Summaries: Polygon Summaries are listings of the planning polygons, grouped by school to which they are assigned. User is prompted to Print or Preview the report, to select whether to print a detailed list or a school summary, and to select whether to include FARM and MSA statistics in the data listed for each polygon and school. The most comprehensive option of this report (detailed listing with FARM and MSA data included) prints a line of data which includes polygon number, FARM percentage, number of FARM students, pass rate for MSA Reading test takers, pass rate for MSA Math test takers, current student enrollment for the selected level of schools, and proposed future housing units by type of unit and projected student enrollment for the selected level of schools for each of the next six school years, for each polygon. Also included are summary statistics of the same data for
each school. The "summary data only" option suppresses the polygon by polygon data lines and only prints the school summary statistics; the "no demographic data" option suppresses the FARM and MSA data from the polygon lines and from the school summaries.
- Feeder Reports: Feeder reports show the number and percentage breakdown of students currently residing in the geographic attendance areas shared between "feeding" schools at one level and "fed" schools at the next highest level. There are six versions of this report, as shown on

the prompt screen above. The lower portion of the prompt screen allows the user to override the default grade level selections for printing a customized version of the feeder report.
- Redistricting Effects Reports: Redistricting Effects Reports are listings, by school, of the proposed changes in attendance areas for a given plan in a given school year. Changes are listed in terms of the planning polygons that are being moved out of, or into, a school's attendance area. Each moved polygon is listed twice in the report, once for the school that is losing it, and once for the school that is gaining it. The number of students involved is listed with each polygon moved, and the school header and footer information shows the before and after school enrollments and capacity utilization rates. When running the Effects report, the user is prompted to select schools years for which reports are needed and to specify which redistricting plan will be in effect for each year selected.
- Redistricting Effects Summaries: The Redistricting Effects Summaries show the cumulative effects of proposed redistricting plans over the next 13 school years, for each school. For each future year listed, the Summary displays the proposed capacity and projected enrollments and capacity utilization rates, before redistricting and after redistricting. No polygon-specific data is shown on these reports.
- School Capacity Table: This report simply lists the data that is entered in the currentlyselected CIP, in a formatted printout.

The Maintenance menu contains options to perform functions that are used infrequently, and thus do not require a control on the main screen. It is reproduced below:

File Edit Export	Reports	Maintenance
	Revert Displayed Plan to Curr. Assignments	
		Set up Phase-In Text Entries Modify School Capacities
		Create New School Capacity Table
		Mark Moved Polygons for Mapping
		Add/Modify Plan Description Text

The "Revert Displayed Plan to Curr. Assignments" option is an "undo" function for reassigning all of the polygons back to the schools to which they are currently assigned in the present school year. This function acts only on the redistricting plan that is currently displayed on the Whiffer screen. Care should be taken in choosing to exercise this option, because all changes made in the current plan will be lost and will not be recoverable after it executes.
"Set up Phase-In Text Entries" creates a file to hold the text used to describe how changes in the high school attendance areas will be phased-in over the years following the adoption of a high school redistricting plan. Once this option has been executed, the user may select the planning polygons involved in high school redistricting, and enter the appropriate phase-in text in the data entry area next to the heading "Phasing:" on the Whiffer screen. The text editing functions available under the Edit menu may be used to facilitate the repetitive entry of the same text on multiple polygons.

The "Modify School Capacities" option opens the currently-selected CIP file in a spreadsheet-like data entry window for editing by the user. This option is used to correct errors in the CIP data and to create a new CIP by changing appropriate schools' entries to their new values. In the latter case, it is used immediately after executing the "Create New School Capacity Table" option to copy the currently-selected CIP file to a new CIP file and make the new CIP file the selected CIP in the Whiffer.
"Mark Moved Polygons for Mapping" sets one or more flags on each polygon in the current redistricting plan that has been assigned to a different school than it is assigned to in the school boundaries that are currently in effect. There is a separate flag for elementary, middle, and high school assignments. These "moved" flags are used in software programs that analyze the strengths and weaknesses of redistricting plans, and in the GIS software when creating maps showing movement of polygons due to redistricting.

The "Add/Modify Plan Description Text" option allows the user to change the currently-displayed redistricting plan's description. The description is initially available for editing when a new plan is created, and this option allows the user to add a description if one was not entered then, or to modify it, at any time after the plan is established.

Data Environment Description

The default data environment for the Whiffer application consists of three data files and two memory cursors (SQL shorthand for "current sort" file, which is basically a data file stored in memory that is the result of a query against data files that exist on mass storage media, such as a computer hard drive.) Some of the procedures that make up the Whiffer’s software code open additional files during the time that they are executing. Most of these temporary use files are closed when the procedure returns control to the main Whiffer program.

The table below shows a schematic diagram of the default Whiffer data environment:

The top four files listed in the left-hand column of the diagram are alternate views of the same physical current CIP data file, with each view given a generic alias when it is opened by the program. The alias "His" refers to the CIP data file filtered so as to make only the high school records visible to the Whiffer; the "Mis" file filters out all but the middle school records; and the "Els" file filters out all but the elementary school records. The "Schools" file is a view of the CIP file with all records visible for use. The "His", "Mis", and "Els" views have the appropriate school records sorted by school name, and this sort sequence is implemented via a conditional index, which also accomplishes the necessary filtering to complete the desired views. The "Schools" data file is also sorted by school name, but via a conventional, non-filtering index. The default CIP data file is named "Schools.dbf", but additional CIP files can be created as desired by the Whiffer user, and given any desired name.

The "Prj" data file is a file of projection data, by planning polygon. It is sorted by planning polygon ID number. The default projection data file is always named "PpprojNN.dbf", where NN is the last two digits of the calendar year in which the projection was created (e.g. the 2008 projection's data would be stored by polygon in a file named "Ppproj08.dbf".) The projection file is the source for the enrollment, housing unit, FARM rate, and MSA pass rate data displayed on the main Whiffer screen.

The "Assignmt" data file is a file of plan data, by planning polygon. A plan file contains the planning polygon ID number and the school assignments for each planning polygon, among other data, as specified by the redistricting plan it represents. The plan file is sorted by planning polygon ID number, and it is the source of the school assignment data shown on the main Whiffer screen. The default Whiffer plan data file name is "BaseNN.dbf", where NN is the last two digits of the calendar year in which the plan was created (e.g. 2008's default plan data would be stored by polygon in a file named "Base08.dbf".) This "Base" plan represents the HCPSS school boundaries as they currently exist, without any proposed redistricting. Additional plan files can be created as desired by the Whiffer user, and given any desired name.

The "Sum2" data file is a cursor created by the "getstat" procedure of the Whiffer code (see code below). This cursor contains a record for each school, with data showing the school's FARM percentage, MSA Math pass rate, and MSA Reading pass rate. At any point in time, it only contains records for the user's currently-selected school level, and it is sorted in the natural order of its creation, which is alphabetically by school name.

The "Sumcur" data file is a cursor created by the "getstat" procedure of the Whiffer code (see code below). This cursor contains a record for each school, with data showing the school's FARM percentage, MSA Math pass rate, and MSA Reading pass rate, number of polygons assigned, and capacity utilization rates for each of the next twelve years. At any point in time, it only contains records for the user's currently-selected school level, and it is sorted in the natural order of its creation, which is alphabetically by school name. The data in this cursor are displayed in the scrolling browse list of school data, located in the bottom half of the main Whiffer screen.

The right-hand column of the diagram above shows the default linkages, or relations, established by the Whiffer program when it opens its default data files. The plan data file ("Assignmt") is related to the projection data file ("Prj") by planning polygon ID number. There is a one-to-one relationship between records in these two files. The projection data file ("Prj") is related to each of the three views of the CIP file ("His", Mis", and "Els") by school name (respectively, "hs_home", "ms_home", and "es_home"). Each projection file record will be linked to three CIP records, one at each school level, by this arrangement.

Additional Data Files

Five additional data files are typically present with the default Whiffer data files. These files are integral to the Whiffer set-up process (described in the documentation of the "MSA_Fred" FoxPro program). They are stored with the Whiffer data so that an exact copy of the source data (as it it was when the Whiffer was established for the current school year) is available for later trouble-shooting or additional data analysis.

The student enrollment data file is always named "bst_stNN.dbf", where NN is the last two digits of the school year for which the file was created (e.g. default student enrollment data for any date during the period 10/1/2007 to 9/30/2008 would be stored in a file named "bst_st08.dbf".) This file contains a record of data for each student enrolled in HCP)SS at the time of its creation. The data in this file should be considered CONFIDENTIAL.

The FoxPro color scheme used by the Whiffer is stored in a file named "colorrsc.dbf". FoxPro color schemes are very complex to set up and maintain, and it is recommended that this file NOT be modified in any way.

The HCPSS set of planning polygons is contained in the data file named "planpoly.dbf". This file also contains the history of school assignments for each polygon since approximately 2002. It is not accessed by the Whiffer, but is included because it is the source of the Whiffer's "baseNN.dbf" data file, during the set up process.

The "pp_hsg.dbf" data file is the file of future housing units, as created by the County Department of Planning and Zoning. It is not directly accessed by the Whiffer, but is included because it is the source of the Whiffer's future housing unit data during the set up process.

The "schlupdt.dbf" file is a file of "by school" projection data that is exported from the HCPSS enrollment projection tool. It is not directly accessed by the Whiffer, but is included because it is the source of the Whiffer's future enrollment data during the set up process.

Technical Description

The Whiffer is a FoxPro application, compiled (and distributed with the FoxPro support library) as a stand-alone executable file. In the FoxPro development environment, it is managed as a project, with the components shown below.

7 whiffer.pjx			- - 미 x
Name	Type		
Cap_list	Report	\pm	Edit
Colorrsc	Index		
Colorrsc	Table/DBF		Information...
Config.fpw	File		
Dummy	Program		Add...
Efctbrb2	Report		Remove
Efctbrb	Report		
Efftbrb4	Report		Build...
Efctbrb5	Report		
Efctbrb6	Report		
Efctbrb7	Report		
Efctbrb8	Report		
Efctbrb9	Report		
Efctsumm	Report		
Effprpt	Screen Set		
Expfprpt	Screen Set		
Expspipt	Screen Set		
Fdi_prpt	Screen Set		
Feeder	Report		
Markprpt	Screen Set		
Newcip	Screen Set		
Newprpt	Screen Set		
Oldfdr	Report		
Oldfdr	Screen Set		
Planxsch	Report		
Polyback	- Screen Set		
Polygon	Menu		
Pol_prpt	Screen Set		
Summprpt	Screen Set		
Updtdesc	Screen Set		
		\pm	

Items listed as reports in the project are self-explanatory; the screen sets are primarily single display screens used as user prompt screens for the export and report-generating processes of the Whiffer. The one exception to this is the screen set called "polyback", which consists of a background screen and the upper half of the main Whiffer display screen, associated together in a single screen set so they will activate and execute as a single entity.

The "polygon" menu is the main menu object that generates all of the Whiffer's menu options.
Miscellaneous files include the two "colorrsc" files that set up and control the Whiffer's teal color scheme, the config.fpw file that contains default FoxPro runtime environmental settings, and the "dummy" program file that exists solely to head off compiler reference errors and does not need to be modified once it is initially created.

The remainder of this section is devoted to a complete listing of the Whiffer program code.
Polyback screen setup code: The Setup code on the Polyback screen executes once whenever the Whiffer.exe is first started by the user. This block of code is used primarily to set up the Whiffer's data and operational environment.

* initial environmental settings:

SET TALK OFF
set escape on
set lock off
set exclusive off
set century on
set bell off
set confirm off
set deleted on
set near on
set exact off
set status off
set status bar off
set safety off
m. $\mathrm{yr}=2008$
\&\& current calendar year, is also first projected Sept 30th enrollment move up one yr each year
$\mathbf{m . s c h y r}={ }^{\prime 0809 ' ~ \& \& ~ s h o u l d ~ a l w a y s ~ a g r e e ~ w i t h ~ l i n e ~ a b o v e, ~ s c h o o l ~ y e a r ~ o f ~ f i r s t ~ p r o j e c t e d ~ e n r o l l m e n t ~}$
m.prjfile='ppproj'+left(m.schyr,2) \&\& derived name of file containing polygon-level housing projections

* initialize Whiffer settings - get and overwrite from memory if settings files exist
m.k_in=.f. \&\& kindergarten set in or out?
if file('k.mem')
restore from k.mem additive
endif
m.cur_lev='ES' \&\& currently level of schools displayed in browse list
if file('lev.mem')
restore from lev.mem additive
endif
m.cur_db='a' \&\& name of currently-displayed plan ("a" is just a place-holder)
if file('db.mem')
restore from db.mem additive
endif
m.cur_cip='a' \&\& name of currently-selected CIP ("a" is just a place-holder)
if file('cip.mem')
restore from cip.mem additive
endif
* additional settings
m.ori=' $\quad \& \&$ default orientation of printed reports (port/land - not used at this time)
m.rept_text='Ready to print report' $\& \&$ default title on user prompt screens for reports
m.go='Cancel' $\& \&$ default action on report prompt screens
m.wait='Save' $\& \&$ default action on file selection prompt screens
$\mathbf{m . t o p r e c}=\mathbf{0} \quad \& \&$ default value for record number of first record in sort sequence
m.botrec=0
M.CHOICE=0
$\& \&$ default value for record number of last record in sort sequence
\&\& default value of screen object number chosen by user
m.go_to=1 \&\& default value for user's chosen polygon number
m.cip_in_use='(none)' \& initial screen value of current CIP name
m.pln_in_use='(none)' \& initial screen value of current plan name
close databases $\quad \& \&$ close any stray open data files and start in a known state
*wait window "Error handling is OFF"
on error do err_msg with error(),message()
\&\& turn on when debugging, comment out the following line
\&\& turn on for production use, comment out preceding line
do dummy.prg \&\& just included to make dummy.prg part of the compiled exe file
do colorset $\quad \& \&$ sets a color scheme for the whole application
do setup $\quad \& \&$ calls setup proc to open standard data file configuration
do polygon.mpr \&\& activates main menu
* establish a window in polyback screen for the school browse list display on the bottom half of polyback screen
define window browind from 20.5,1.4 to 39,118.15 nofloat close none font 'MS Sans Serif', 8 in window polyback
* call the "get_stat" procedure to refresh and display the school browse list in polyback screen =get_stat(m.cur_lev)

Polyback screen Cleanup code: The Cleanup code for the Whiffer is a set of procedures that are called by other procedures or by controls, such as menu options and buttons, on the surface of the main Whiffer screen.


```
    m.yr_txt='m.yr'+alltrim(str(n))+'_txt' && create a set of fields "m.yr_txtN"
    &yeer=.f. && initialize each m.yrN field with a value of "false"
    &yr_txt=alltrim(str(year(date())-1+n)) && initialize each m.yr_txtN field with the
    text version of
*
    a different year's value, starting with next calendar year
endfor
do case && intitalize screen title and open user prompt screen
case typ='sum' && settings for summary report
    m.rept_text='Ready to print Redistricting Summary Report for '+alltrim(lev)
    do summprpt.spr && call summary report prompt screen
case typ='eff' && settings for effects report
    m.rept_text='Ready to print Redistricting Effects Report(s) for '+alltrim(lev)
    do effprpt.spr && call effects report prompt screen
case typ='exp' && settings for effects export
    * initialize an array for each future year's data
    dimension mv2[1],mv3[1],mv4[1],mv5[1],mv6[1],mv7[1],mv8[1],mv9[1],mv10[1],
                mv11[1],mv12[1],mv13[1],mv14[1]
    m.xfile='' && initialize a variable to hold the name of the export file
    m.rept_text='Ready to export Redistricting Effects for '+alltrim(lev)
    do expsprpt.spr && call effects export prompt screen
endcase
if m.go#'Cancel' && proceed if the user has not elected to cancel the process from the
                    prompt screen
    m.plan10=m.plan9 && prompt screen only has room to specify 8 future years'
                                    redistricting plans
    m.plan11=m.plan9 && so make years 9 thru 13 the same plan as year 8
    m.plan12=m.plan9
    m.plan13=m.plan9
    m.plan14=m.plan9
    m.rec=recno() && save the record number of current record, so can get back
                                    to it at the end
    m.pphm='pp.'+lev+'_home' && eventual field name for school names in
    projections file,
    for substitution into SQL select command below
    m.asghm='asg.'+lev+'_home' && eventual field name for school names in
    plan files,
    for substitution into SQL select command below
    m.schdb=iif(lev='HS','his',iif(lev='MS','mis','els')) && name of school file
    m.schl=m.schdb+'.schl_name' && fully-qualified name of school name field in
    school file
    do case
    case typ='exp'
        if m.lev='ES' && elementary school data requested
                    m.set_k=m.k_in && save current setting of "K included" flag
                    m.k_in=.t. && reset "K included" flag temporarily to "true"
                    =get_curs() && call procedure to create cursor from which export
```

```
                                    is done
    =exp_effs() && call procedure to export data
    use && close cursor in current work area
    m.k_in=.f. && reset "K included" flag temporarily to "false"
    =get_curs() && call procedure to create cursor from which export
        is done
    =exp_effs() && call procedure to export data
    m.k_in=m.set_k && reset "K included" flag to original value
    else
    =get_curs() && call procedure to create cursor from which export
        is done
    =exp_effs() && call procedure to export data
    endif
case typ='sum' && redistricting effects summary report
    =get_curs() && call procedure to create cursor from which report is done
    =prt_rept('efctsumm') && call general-purpose report printing
                                    procedure to print report form "efctsumm.frx"
case typ='eff' && redistricting effects report
    =get_curs() && call procedure to create cursor from which report is done
    && restrict record access to those of desired school level
    set filter to level=iif(lev='HS','3',iif(lev='MS','2',iif(lev='ES','1','0')))
    for m=2 to 9 && repeat for each possible future year
        m.rept="efctbrb"+alltrim(str(m)) && create name of report for
                                    macro substitution later
        m.yeer='m.yr'+alltrim(str(m)) && create name of user's desired
                                    years field for macro substitution
        if &yeer && if user has called for this year's report on the
            prompt screen
                =prt_rept(m.rept) && call the general-purpose report
                                    printing procedure to print report form
                                    "efctbrb2.frx", etc.
        endif
    endfor
endcase
use && close all open cursors
select moves2
use
select moves3
use
select moves4
use
select moves5
use
select moves6
use
select moves7
```

```
use
select moves8
use
select moves9
use
select moves10
use
select moves11
use
select moves12
use
select moves13
use
select moves14
use
select assignmt
goto m.rec && go back to record that was current before this procedure was run
=get_stat(lev) && call getstat procedure to refresh the school browse list
save to plnyrs.mem all like plan* && save prompt screen settings for future use
_CUROBJ=OBJNUM(M.go_to) && place screen's cursor on the "Go to" button
if typ='exp' && if the user has chosen to export, tell them the names of the exported files
wait window 'Data written to "'+alltrim(m.xfile)+'". '+chr(13)+"Press any key
to continue . .."
return && return control to the main Whiffer screen program
```

endif
endif
procedure get_curs
\&\& creates a set of SQL cursors, one for each future year

* initialize a set of expressions containing the field names to be summed together to get the future enrollment projection
* Add in K totals if user requested ES and K is being counted
m.prj2='prj.'+lev+'proj2'+iif(m.k_in and lev='ES','+prj.ksproj2','') \&\& 2nd yr projection
m.prj3='prj.'+lev+'proj3'+iif(m.k_in and lev='ES','+prj.ksproj3','') \&\& 3rd yr projection
m.prj4='prj.'+lev+'proj4'+iif(m.k_in and lev='ES','+prj.ksproj4','') \&\& 4th yr projection
m.prj5='prj.'+lev+'proj5'+iif(m.k_in and lev='ES','+prj.ksproj5','') \&\& 5th yr projection
m.prj6='prj.'+lev+'proj6'+iif(m.k_in and lev='ES','+prj.ksproj6','') \&\& 6th yr projection
m.prj7='prj.'+lev+'proj7'+iif(m.k_in and lev='ES','+prj.ksproj7','') \&\& 7th yr projection
m.prj8='prj.'+lev+'proj8'+iif(m.k_in and lev='ES','+prj.ksproj8','') \&\& 8th yr projection
m.prj9='prj.'+lev+'proj9'+iif(m.k_in and lev='ES','+prj.ksproj9','') \&\& 9th yr projection
m.prj10='prj.'+lev+'proj10'+iif(m.k_in and lev='ES','+prj.ksproj10','') \&\& 10th yr
projection
m.prj11='prj.'+lev+'proj11'+iif(m.k_in and lev='ES','+prj.ksproj11','')
\&\& 11th yr projection
m.prj12='prj.'+lev+'proj12'+iif(m.k_in and lev='ES','+prj.ksproj12','')
\&\& 12th yr projection
m.prj13='prj.'+lev+'proj13'+iif(m.k_in and lev='ES','+prj.ksproj13','')
projection
m.prj14='prj.'+lev+'proj14'+iif(m.k_in and lev='ES','+prj.ksproj14','')
\&\& 14th yr
projection
for $\mathbf{m}=\mathbf{2}$ to $14 \quad \& \&$ for each future year m.lpln='m.plan'+alltrim(str(m-1))
m.plan='m.plan'+alltrim(str(m))
m.pln='pln'+alltrim(str(m))
m.mov='moves'+alltrim(str(m))
m.ndx='temp'+alltrim(str(m))+'.ndx' $\mathbf{m . d b}=\&$ plan $\quad \& \&$ put current year's plan name in m.db field
* \&\& put projection file name if processing first future year, otherwise, last year's plan name in m.prvdb
m.prvdb=iif(m=2,m.prjfile,\&lpln)
select $0 \quad \& \&$ open new work area
use \&prvdb again alias pp \&\& open last year's plan, give it generic alias of "pp" select $0 \quad \& \&$ open new work area
use \&db again alias asg \&\& open current plan, give it generic alias of "asg" set order to plan_id $\quad \& \&$ set sort sequence to plan ID number m.lvlfld=alltrim(lev)+'_home' $\& \&$ put name of appropriate home school field in m.lvlfld
* \&\& the following SQL select command creates a cursor i.e. a read-only dbf file in memory
* \&\& the SQL cursor has one record per planning polygon moved in the designated year, with the following structure:
* $\quad \& \&$ field 1: the name of the current home school
* $\quad \& \&$ field 2: the text 'To ' plus the name of the new home school
* $\quad \& \&$ field 3: the planning polygon ID number
* $\quad \& \&$ field 4 through field 16: projected enrollment of this polygon for each future year
* $\quad \& \&$ this data is pulled out of the current plan file, the planning polygons file, the school file, and
* $\quad \& \&$ the projections file as needed. the files are related to each other as shown in the "where" clause below
* \&\& the resulting cursor is given the name "mv_a" select padr(\&pphm,25,' ') as \&lvlfld,;
'To '+padr(alltrim(\&asghm),25,' ') as desc, ;
pp.plan_id,;
iif($m<3,-1$ *round(\&prj2,0),0) as pop2, ;
iif($m<4,-1$ *round (\&prj3,0),0) as pop3, ;
iif(m<5,-1*round (\&prj4,0),0) as pop4, ; iif($\mathrm{m}<6,-1^{*}$ round (\&prj5,0),0) as pop5, ; iif($m<7,-1^{*}$ round (\&prj6,0),0) as pop6, ; iif($m<8,-1^{*}$ round (\&prj7,0),0) as pop7, ; iif($m<9,-1$ *round (\&prj8,0),0) as pop8, ; iif(m<10,-1*round(\&prj9,0),0) as pop9, ;

```
    iif(m<11,-1*round(&prj10,0),0) as pop10, ;
    iif(m<12,-1*round(&prj11,0),0) as pop11,;
    iif(m<13,-1*round(&prj12,0),0) as pop12,;
    iif(m<14,-1*round(&prj13,0),0) as pop13,;
    -1*round(&prj14,0) as pop14 ;
    from asg,pp,(schdb),prj;
    where pp.plan_id=asg.plan_id and asg.plan_id=prj.plan_id and ;
        alltrim(&pphm)=alltrim(&schl) and ;
        alltrim(&asghm)#alltrim(&pphm);
    into cursor mv_a
```

* \&\& the following SQL select command creates a second cursor with the same number of records as mv_a
* $\quad \& \&$ this cursor has one record per planning polygon moved in the designated year, with the following structure:
* $\quad \& \&$ field 1: the name of the new home school
* $\quad \& \&$ field 2: the text 'From ' plus the name of the current home school
* $\quad \& \&$ field 3: the planning polygon ID number
* $\quad \& \&$ field 4 through field 16: projected enrollment of this polygon for each future year
* $\quad \& \&$ this data is pulled out of the current plan file, the planning polygons file, the school file, and
* \&\& the projections file as needed. the files are related to each other as shown in the "where" clause below
* \&\& the resulting cursor is given the name "mv_b"
select padr(\&asghm,25,' ') as \&lvlfld,;
'From '+padr(alltrim(\&pphm),25,' ') as desc, ;
asg.plan_id,;
iif(m<3,round (\&prj2,0),0) as pop2, ;
iif(m<4,round (\&prj3,0),0) as pop3, ;
iif(m<5,round (\&prj4,0),0) as pop4, ;
iif(m<6,round(\&prj5,0),0) as pop5, ;
iif(m<7,round(\&prj6,0),0) as pop6, ;
iif(m<8,round (\&prj7,0),0) as pop7, ;
iif(m<9,round (\&prj8,0),0) as pop8, ;
iif(m<10,round(\&prj9,0),0) as pop9, ;
iif(m<11,round(\&prj10,0),0) as pop10, ;
iif(m<12,round(\&prj11,0),0) as pop11, ;
iif($m<13$,round (\&prj12,0),0) as pop12, ;
iif(m<14,round(\&prj13,0),0) as pop13, ;
round(\&prj14,0) as pop14 ;
from asg,pp,(schdb),prj ;
where pp.plan_id=asg.plan_id and asg.plan_id=prj.plan_id and ;
alltrim (\&pphm) $=$ alltrim (\&schl) and ;
alltrim(\&asghm) \#alltrim(\&pphm) ;
into cursor mv_b
\&\& the following SQL select command creates a third cursor containing a record for every record in
* \&\& both mv_a and mv_b, with the following structure:
* $\quad \& \&$ field 1: the name of the current home school
* $\quad \& \&$ field 2: the text 'From ' or the text 'To ' plus the name of the new home school
* $\quad \& \&$ field 3: the planning polygon ID number
* $\quad \& \&$ field 4 through field 16: projected enrollment of this polygon for each future year
* $\quad \& \&$ the resulting cursor is given the name "move" plus the number of the future year
select \&lvlfld,mv_a.desc,plan_id,val(str(pop2,5)) as pop2,val(str(pop3,5)) as pop3,val(str(pop4,5)) as pop4,;
val(str(pop5,5)) as pop5,val(str(pop6,5)) as pop6,val($\operatorname{str}(p o p 7,5)$) as pop7,val(str(pop8,5)) as pop8,;
val($\operatorname{str}(p o p 9,5)$) as pop9,val(str(pop10,5)) as pop10,val(str(pop11,5)) as pop11,val(str(pop12,5)) as pop12,;
val($\operatorname{str}(p o p 13,5)$) as pop13,val($\operatorname{str}(p o p 14,5))$ as pop14 from mv_a ;
union select \&lvlfld,mv_b.desc,plan_id,val(str(pop2,5)) as pop2,val(str(pop3,5)) as pop3,;
val(str(pop4,5)) as pop4,val(str(pop5,5)) as pop5,val(str(pop6,5)) as pop6,val(str(pop7,5)) as pop7,;
val($\operatorname{str}(p o p 8,5)$) as pop8,val(str(pop9,5)) as pop9,val(str(pop10,5)) as pop10,val(str(pop11,5)) as pop11,;
val($\operatorname{str}(p o p 12,5)$) as pop12,val($\operatorname{str}(p o p 13,5))$ as pop13,val($\operatorname{str}(p o p 14,5))$ as pop14 from mv_b ;
into cursor \&mov
select asg $\quad \& \&$ close the current plan file
use
select pp \&\& close the planning polygon file
use
select \&mov \&\& select the "moves" cursor
index on \&lvlfld to \&ndx $\& \&$ create an index on home school and sort the cursor accordingly
endfor \&\& repeat above for each future year until all 13 cursors have been created
SELECT 0 \&\& open a new work area
use (cur_cip) again alias cip order name $\& \&$ open the current CIP file and sort it by school
* $\quad \& \&$ relate the CIP file into each of the 13 cursors
set relation to alltrim(schl_name) into moves2,alltrim(schl_name) into moves3,
alltrim(schl_name) into moves4,;
alltrim(schl_name) into moves5, alltrim(schl_name) into moves6,
alltrim(schl_name) into moves7,;
alltrim(schl_name) into moves8,alltrim(schl_name) into moves9,
alltrim(schl_name) into moves10,;
alltrim(schl_name) into moves11,alltrim(schl_name) into moves12,
alltrim(schl_name) into moves13,;
alltrim(schl_name) into moves14
\&\& establish a one-to-many relationship from the CIP records to its related records in each cursor
set skip to moves2,moves3,moves4,moves5,moves6,moves7,moves8,moves9,moves10, moves11,moves12,moves13,moves 14
* \&\& select only CIP schools of the appropriate school level, then ready to export or report set filter to level=iif(lev='HS','3',iif(lev='MS','2',iif(lev='ES','1','0')))
return \&\& to procedure prt_summ
procedure exp_effs \&\& writes export file of redistricting effects data for one level of schools do case $\quad \& \&$ set up proper text string to describe grade levels exported case $\mathbf{m} . l e v=' E S '$ and $\mathbf{m} . \mathbf{k}_{-}$in $\quad \& \&$ user requests ES and is counting grade K m.grds='K5' $\& \&$ export contains grades K through 5
case m.lev='ES' and not m.k_in $\quad \& \&$ user requests ES and is not counting grade K m.grds='15' \&\& export contains grades 1 through 5
case m.lev='MS' \&\& user requests MS
m.grds='68' \&\& export contains grades 6 through 8
case m.lev='HS' \&\& user requests HS m.grds='912' \&\& export contains grades 9 through 12
endcase
m.ufile='Efct_'+m.grds+".xls" \&\& compose text string for name of export file (with grade levels embedded)
copy file hrdata to (ufile)
m.filhand=fopen(m.ufile,2)
$=$ fchsize(m.filhand,0)
set skip to
\&\& copy "seed" file to export file
$\& \&$ open export file for use
$\& \&$ clear out contents of export file
\&\& turn off one-to-many relationship of CIP file into cursors (set up in get_curs proc)

set relation to

* \&\& write header record to export file
=fwrite(m.filhand,'School'+chr(9)+chr(9)+m.year2+chr(9)+m.year3+chr(9)+m.year4+ chr(9)+m.year5+chr(9)+m.year6+chr(9)+m.year7)
$=$ fputs(m.filhand, chr $(9)+$ m.year8 $+\operatorname{chr}(9)+$ m.year $9+\operatorname{chr}(9)+$ m.year10+chr(9)+m.year11+ $\operatorname{chr}(9)+$ m.year12 $+\operatorname{chr}(9)+\mathbf{m}$. year13 $+\operatorname{chr}(9)+$ m.year14)
scan \&\& work sequentially through each record of the CIP file, i.e school by school =fwrite(m.filhand,schl_name) \&\& write school name to export file for $\mathbf{n = 2}$ to $14 \quad \& \&$ for each future year
* $\quad \& \&$ initialize a set of fields containing the name of the cursor holding a future year's data m.db='moves'+alltrim(str(n)) $\mathbf{m} . \mathbf{a r a}^{\prime}=$ 'mv'+alltrim(str(n)) \&\& and the name of a corresponding memory array select (db) \&\& activate the current year's cursor
* \&\& sum each future enrollment across all polygons assigned to the school in the current CIP record
* $\quad \& \&$ and put the result in the appropriate memory array
sum pop2,pop3,pop4,pop5,pop6,pop7,pop8,pop9,pop10,pop11,pop12,pop13, pop14 to array (ara) ;
for alltrim(iif(lev='ES',es_home,iif(lev='MS',ms_home,hs_home)))= alltrim(cip.schl_name)
select cip $\quad \& \&$ switch back to CIP so scan:endscan will work properly endfor
* \&\& create the future enrollments from the current enrollment of the school plus future adjustments due

```
\&\& to potential redistricting in each future year
m.enr2=round(geopop2+oodadj2+iif(m.k_in and m.lev='ES',kgeopop2+koodadj2,0) \(+m v 2[1], 0)\)
m.enr3=round(geopop3+oodadj3+iif(m.k_in and m.lev='ES',kgeopop3+koodadj3,0) \(+m v 2[2]+m v 3[2], 0)\)
m.enr4=round(geopop4+oodadj4+iif(m.k_in and m.lev='ES',kgeopop4+koodadj4,0) +mv2[3]+Mv3[3]+mv4[3],0)
m.enr5=round(geopop5+oodadj5+iif(m.k_in and m.lev='ES',kgeopop5+koodadj5,0)
\(+m v 2[4]+\mathrm{Mv} 3[4]+\mathrm{mv} 4[4]+\mathrm{mv} 5[4], 0\) )
m.enr6=round(geopop6+oodadj6+iif(m.k_in and m.lev='ES',kgeopop6+koodadj6,0)
+mv2[5]+Mv3[5]+mv4[5]+mv5[5]+mv6[5],0)
m.enr7=round(geopop7+oodadj7+iif(m.k_in and m.lev='ES',kgeopop7+koodadj7,0)
\(+\mathrm{mv} 2[6]+\mathrm{Mv} 3[6]+\mathrm{mv} 4[6]+\mathrm{mv} 5[6]+\mathrm{mv6}[6]+\mathrm{mv} 7[6], 0)\)
m.enr8=round(geopop8+oodadj8+iif(m.k_in and m.lev='ES',kgeopop8+koodadj8,0)
+mv2[7]+Mv3[7]+mv4[7]+mv5[7]+mv6[7]+mv7[7]+mv8[7],0)
m.enr9=round(geopop9+oodadj9+iif(m.k_in and m.lev='ES',kgeopop9+koodadj9,0)
\(+\mathbf{m v} 2[8]+\mathrm{Mv} 3[8]+\mathrm{mv} 4[8]+\mathrm{mv} 5[8]+\mathrm{mv} 6[8]+\mathrm{mv} 7[8]+\mathrm{mv} 8[8]+\mathrm{mv} 9[8], 0)\)
m.enr10=round(geopop10+oodadj10+iif(m.k_in and m.lev='ES',kgeopop10+
koodadj10,0)+mv2[9]+Mv3[9]+mv4[9]+mv5[9]+mv6[9]+mv7[9]+
mv8[9]+mv9[9]+mv10[9],0)
m.enr11=round(geopop11+oodadj11+iif(m.k_in and ;
m.lev='ES',kgeopop11+koodadj11,0)+mv2[10]+Mv3[10]+mv4[10]+mv5[10]+
\(\mathbf{m v 6}[10]+\mathbf{m v 7}[10]+\mathbf{m v 8}[10]+\mathbf{m v 9 [ 1 0 ] + m v 1 0 [ 1 0 ] + m v 1 1 [ 1 0 ] , 0 )}\)
m.enr12=round(geopop12+oodadj12+iif(m.k_in and ;
m.lev='ES',kgeopop12+koodadj12,0)+mv2[11]+Mv3[11]+mv4[11]+mv5[11]+ \(\mathbf{m v 6}[11]+\mathbf{m v} 7[11]+\mathbf{m v} 8[11]+\mathbf{m v 9}[11]+\mathbf{m v 1 0}[11]+\mathbf{m v 1 1 [ 1 1 ] + m v 1 2 [ 1 1 ] , 0 )}\)
m.enr13=round(geopop13+oodadj13+iif(m.k_in and ;
m.lev='ES',kgeopop13+koodadj13,0)+mv2[12]+Mv3[12]+mv4[12]+mv5[12]+ mv6[12]+mv7[12]+mv8[12]+mv9[12]+mv10[12]+mv11[12]+mv12[12]+ mv13[12],0)
m.enr14=round(geopop14+oodadj14+iif(m.k_in and ;
m.lev='ES',kgeopop14+koodadj14,0)+mv2[13]+Mv3[13]+mv4[13]+mv5[13]+ \(\mathbf{m v 6}[13]+\mathbf{m v 7}[13]+\mathbf{m v 8}[13]+\mathbf{m v 9 [ 1 3 ] + m v 1 0 [ 1 3 ] + m v 1 1 [ 1 3 ] + m v 1 2 [ 1 3 ] + ~}\) mv13[13]+mv14[13],0)
* \&\& write all future enrollments for this school to output file in appropriate columns
* \&\& i.e. tab-delimited output, with a line-feed/carriage return at end
\(=\) fwrite(m.filhand, chr(9)+chr(9)+alltrim(str(m.enr2))+chr(9)+alltrim(str(m.enr3))+ chr(9)+alltrim(str(m.enr4))+chr(9)+alltrim(str(m.enr5)))
\(=\) fwrite(m.filhand,chr(9)+alltrim(str(m.enr6))+chr(9)+alltrim(str(m.enr7))+chr(9)+ alltrim(str(m.enr8))+chr(9)+alltrim(str(m.enr9)))
\(=\) fwrite(m.filhand,chr(9)+alltrim(str(m.enr10))+chr(9)+alltrim(str(m.enr11)) \({ }^{+}\)
chr(9)+alltrim(str(m.enr12))+chr(9)+alltrim(str(m.enr13)))
\(=\) fputs(m.filhand, \(\operatorname{chr}(9)+\) alltrim( \(\operatorname{str}(\mathbf{m} . e n r 14)\) ))
endscan \(\& \&\) repeat above steps for each school
* \(\quad \& \&\) write file footer info to output file
* \(\quad \& \&\) plan in use each future year
```

=fwrite(m.filhand,'Plan in use:'+chr(9)+chr(9)+alltrim(strtran(m.plan2,'.dbf'))+chr(9)+ alltrim(strtran(m.plan3,'.dbf'))+chr(9)+alltrim(strtran(m.plan4,'.dbf')))
=fwrite(m.filhand, chr(9)+alltrim(strtran(m.plan5,'.dbf'))+chr(9)+ alltrim(strtran(m.plan6,'.dbf'))+chr(9)+alltrim(strtran(m.plan7,'.dbf')))
=fwrite(m.filhand,chr(9)+alltrim(strtran(m.plan8,'.dbf'))+chr(9)+
alltrim(strtran(m.plan9,'.dbf'))+chr(9)+alltrim(strtran(m.plan10,'.dbf')))
=fwrite(m.filhand,chr(9)+alltrim(strtran(m.plan11,'.dbf'))+chr(9)+
alltrim(strtran(m.plan12,'.dbf'))+chr(9)+alltrim(strtran(m.plan13,'.dbf')))
=fputs(m.filhand,chr(9)+alltrim(strtran(m.plan14,'.dbf')))

* \&\& CIP in use and current date
=fwrite(m.filhand,chr(9)+chr(9)+'CIP in use:'+chr(9)+m.cip_in_use+chr(9)+chr(9)+chr(9)+ $\operatorname{chr}(9)+$ dtoc $($ date ()$)+\operatorname{chr}(9)+\operatorname{chr}(9)+\operatorname{chr}(9)+\operatorname{chr}(9))$
* $\quad \& \&$ school level requested by user and grade levels counted for enrollment totals
$=$ fputs(m.filhand,alltrim(m.lev)+' population - grades '+left(alltrim(m.grds),1)+
' to '+alltrim(substr(m.grds,2)))
$=$ fclose(m.filhand) \&\& close output file
m.xfile=alltrim(m.xfile)+'; '+alltrim(m.ufile) \&\& append current export file name to existing string of file names
return \&\& to procedure prt_summ
procedure expt_fdr \&\& exports a file of feed rate data
parameters typ \&\& currently "FS" for Feasibility Study (i.e. the destination of the exported file)
m.rept_text='Ready to export Feeder Data for multiple plans'
for $\mathbf{n}=\mathbf{2}$ to $9 \quad \& \&$ initialize fields for user prompt screen (8 years' worth)
m.pln='m.plan'+alltrim(str(n)) \&\& plan in effect each year in field named "m.planN"
m.yeer='m. $\mathbf{y r}$ '+alltrim($\mathbf{s t r}(\mathbf{n})$) $\quad \& \&$ year selected? T/F in field named "m.yrN"
$\mathbf{m . y r}$ _txt='m.yr'+alltrim(str(n))+'_txt' $\quad \& \&$ year as char. string in field named "m.yrN_txt"
\&pln=m.cur_db $\quad \& \&$ start with currently-selected plan in all plan name fields \&yeer=.f. $\quad \& \&$ start with all years' check boxes unselected \& yr_txt=alltrim(str(year(date())-1+n)) \&\& calculate the appropriate calendar year value for each future year
endfor
for $\mathbf{m}=\mathbf{0}$ to $12 \quad \& \&$ initialize all grade level chaeck boxes to unselected m.gr_fld='m.g'++alltrim(str(m)) \&\& grade level selected? T/F in field named "m.gM" \&gr_fld=.f.
endfor
m.choi=1 $\quad \& \&$ default export will be "\% of Middle from Each Elementary" (option 1 on control named "m.choi" on prompt screen)
* if file('fplnyrs.mem') \&\& inactive code
* restore from fplnyrs.mem additive
* endif
m.plan2="base"+left(m.schyr,2)+".dbf" \&\& initialize first year's plan to be the current "base" plan
for $\mathbf{m}=\mathbf{3}$ to $\mathbf{9} \quad \& \&$ initialize all other years to current plan m.pln='m.plan'+alltrim(str(m))
current year's plan field
\&pln=ALLTRIM(lower(m.pln_in_use))+".dbf" \&\& put name of current plan in current year's plan field
endfor
m.go='Export'
do expfprpt.spr
$\& \&$ initialize user's action button
$\& \&$ activate the user prompt screen
$\& \&$ proceed if the user has not elected to cancel the process from the prompt screen
select assignmt
m.rec=recno()
\&\& select the work area with the current plan open in it $\& \&$ save the record number of current record, so can get back to it at the end
copy structure extended to feeds.dbf \&\& save the structure of the current plan file in a file called "feeds.dbf"
select $0 \quad \& \&$ switch to an unused work area
use feeds exclusive $\quad \& \&$ open the file containing the plan file structure
zap $\quad \& \&$ clear out the structure records i.e. will create a new structure in this file,
* $\quad \& \&$ to describe a new data file with the fields defined below:
insert into feeds (field_name,field_type,field_len,field_dec)
values ('recv_schl','C',25,0) \&\& add a receiving school field
insert into feeds (field_name,field_type,field_len,field_dec)
values ('send_schl','C',25,0) \&\& add a sending school field
for $\mathbf{n}=2$ to 9 \&\& add up to 8 sets of "number of students" and "feed percentage" fields
* $\quad \& \&$ one set for each year that the user selected on the prompt screen m. $\mathbf{y r}$ _txt='m.yr'+alltrim($\mathbf{s t r}(\mathbf{n}))^{+}{ }^{\prime} \mathbf{t x t}^{\prime} \quad \& \&$ year as char. string in field named "m.yrN_txt"
m.yeer='m. $\mathbf{y r}$ '+alltrim(str(n))
\&\& year selected? T/F in field named "m.yrN"
if \&yeer $\quad \& \&$ insert a set of field descriptions if user selected the year
insert into feeds (field_name,field_type,field_len,field_dec)
values ('fd_'+\&yr_txt+'_nm','N',4,0)
insert into feeds (field_name,field_type,field_len,field_dec)
values ('fd_'+\&yr_txt+'_pc','N',5,1)
endif
endfor
create tempfeed.dbf from feeds \&\& use the structure file to create an empty data file with the described structure
index on alltrim(recv_schl)+alltrim(send_schl) tag schl \&\& create an index on receiving school plus sending school
m.num_plans=0 $\& \&$ initialize a plan counter
for $\mathbf{n}=2$ to $9 \quad \& \&$ for each future year
m.yeer='m. $\mathbf{y r}$ '+alltrim(str(n))
\&\& name of the prompt screen field for this iteration
if \&yeer $\quad \& \&$ if user selected this year on prompt screen m.num_plans=m.num_plans+1 \&\& count how many plans' data are being output, for later

* $\quad \& \&$ the following SQL select command creates a cursor with one record per receiving
school,
* \&\& with the following structure:
* $\quad \& \&$ field 1: the name of the receiving school
* $\quad \& \&$ field 2: the sum of the user's selected HS grade levels' enrollment, across all polygons assigned to the receiving school
* \&\& field 3: the sum of the user's selected MS grade levels' enrollment, across all polygons assigned to the receiving school
* \&\& field 4: the sum of the user's selected ES grade levels' enrollment, across all polygons assigned to the receiving school
* $\quad \& \&$ this data is pulled out of the current plan file and
* $\quad \& \&$ the projections file as needed. the files are related to each other by planning polygon ID number
* $\quad \& \&$ the resulting cursor is given the name "schtot"
select alltrim(\&field) as schl, ;
iif(m.g12,sum(pp.gr12_pop),0)+;
iif(m.g11,sum(pp.gr11_pop),0)+
iif(m.g10,sum(pp.gr10_pop),0)+
iif(m.g9,sum(pp.gr9_pop),0) as hs_tot, ;
iif(m.g8,sum(pp.gr8_pop),0)+
iif(m.g7,sum(pp.gr7_pop),0)+
iif(m.g6,sum(pp.gr6_pop),0) as ms_tot, ;
iif(m.g5,sum(pp.gr5_pop),0)+
iif(m.g4,sum(pp.gr4_pop),0)+
iif(m.g3,sum(pp.gr3_pop),0)+;
iif(m.g2,sum(pp.gr2_pop),0)+
iif(m.g1,sum(pp.gr1_pop),0)+
iif(m.g0,sum(pp.gr0_pop),0) as es_tot ;
from \&pln asg,prj pp into cursor schtot where
pp.plan_id=asg.plan_id group by \&field
select schtot \&\& switch to the cursor data file
index on schl to temp.ndx \&\& sort the cursor by school name
select \&pln $\quad \& \&$ switch back to the current plan file
$\mathbf{m} . \mathbf{f l d}=\mathbf{s u b s t r}(\mathbf{m} . f i e l d, 5) \quad \& \&$ store the field name without the file name qualifier in "m.fld"
set relation to alltrim(\&fld) into schtot,plan_id into prj \&\& relate the plan file to the cursor by school name, * $\quad \& \&$ and to the projection file by planning polygon ID number
m.fdr_tot=0 \&\& intitalize some accumulators
m.rcvr_tot=0
m.adv_tot=0
m.rec_schl=alltrim(iif(m.choi=2,hs_home,ms_home)) \&\& store name of receiving school
m.snd_schl=alltrim(iif(m.choi=2,ms_home,es_home)) \&\& store name of sending school
* $\quad \& \&$ initialize a flag to indicate that the first line of a new receiving school is currently being written to the output file

m.rec_schl or EOF()
endif
\&\& write the names of selected plan for each year in a header record
$=$ fwrite(m.filhand, $\mathbf{c h r}(\mathbf{9})$) \&\& output a single "Tab" character to align columns properly
$\mathbf{p = 1} \quad \& \&$ initialize a counter to keep track of how many plans have been output vs number of plans counted above
for $\mathbf{n}=\mathbf{2}$ to 9 \&\& cycle through each of the possible future years
$\mathbf{m} . \mathbf{y e e r}=\mathbf{\prime} \mathbf{m} . \mathbf{y r}^{\prime}+$ alltrim($\mathbf{(t r}(\mathbf{n})$) \&\& this year selected? user's selections in field named "m.yrN"
if \&yeer \&\& if user selected this year for output, write something in Excel output file
m.pln='m.plan'+alltrim(str(n)) \&\& plan in effect each year in field named "m.planN"

```
            if p=m.num_plans && if now writing data for last plan, write plan
                    name and carriage return/line feed character
            =fputs(m.filhand,chr(9)+chr(9)+&pln) && write two "tab"
                                    characters first to get proper spacing
            else && if more plans follow, write just the plan name
            p=p+1 && increment the "number of plans written" counter
            =fwrite(m.filhand,chr(9)+chr(9)+&pln) && write two "tab"
                                    characters first to get proper spacing
            endif
    endif
endfor
if typ='FS' && currently, the only active option
    && write calendar year headers
    =fwrite(m.filhand,chr(9)) && output a single "Tab" character to align
                                    columns properly
    p=1 && initialize a counter to keep track of how many plans have been
                                    output vs number of plans counted above
    for n=2 to 9 && cycle through each of the possible future years
            m.yeer='m.yr'+alltrim(str(n)) && this year selected? user's
                                    selections in field named "m.yrN"
                    if &yeer && if user selected this year for output, write something in
                        Excel output file
                    m.yr_txt='m.yr'+alltrim(str(n))+'_txt' && create year as
                                    char. string in field named "m.yrN_txt"
                                    if p=m.num_plans && if now writing data for last plan, write
                                    plan name and carriage return/line feed character
                                    =fputs(m.filhand,chr(9)+chr(9)+&yr_txt) && write two
                                    "tab" characters first to get proper spacing
                                    else && if more plans follow, write just the calendar year
                                    p=p+1 && increment the "number of plans written"
                                    counter
                                    =fwrite(m.filhand,chr(9)+chr(9)+&yr_txt) && write
                                    two "tab" characters first to get proper spacing
                    endif
            endif
    endfor
endif
if typ='FS' && currently, the only active option
\&\& write detail line headers
=fwrite(m.filhand,m.rcvr+chr(9)+m.sndr) \&\& write receiving school, "tab" character, then sending school
for \(\mathbf{n = 1}\) to m.num_plans \(\& \&\) write column headers once for each plan
if \(\mathbf{n}=\mathbf{m}\). num_plans \(\quad \& \&\) if now writing data for last plan, write headers and carriage return/line feed character
=fputs(m.filhand,chr(9)+'\# of Students'+chr(9)+' \%') \&\& write one "tab" character first to get proper spacing
```

else $\quad \& \&$ if more plans follow, write just the headers
=fwrite(m.filhand,chr(9)+'\# of Students'+chr(9)+'\%')
\&\& write one "tab" character first to get proper spacing
endif
endfor
endif
select tempfeed $\quad \& \&$ switch to the output data file of feed rates and numbers created above
goto top $\& \&$ move to the top record
m.first=.t. $\quad \& \&$ initialize a "first line of output for the receiving school" flag m.rcvr=alltrim(recv_schl) \&\& initialize a field to hold the name of the receiving school
for $\mathbf{p}=1$ to m.num_plans \&\& create and initialize a field to accumulate totals for the receiving school for each plan
m.tot_fld='m.tot'+alltrim(str(p)) \&\& set up name of field for macro substitution on next line
\&tot_fld $=\mathbf{0} \quad \& \&$ initialize the field to 0
endfor
\&\& write detail data lines
scan $\quad \& \&$ read the records in tempfeed.dbf sequentially
if \mathbf{m}.first
\&\& if first line of output for the receiving school, write the receiving school's name
if typ="FS"
=fputs(m.filhand,recv_schl) \&\& write line with only receiving school's name
endif
m.first=.f. $\quad \& \&$ turn off the "first line" flag
m.num_lines=0 $\quad \& \&$ initialize field to count number of sending schools written
endif
\&\& write sending school name on detail line
if typ="FS"
=fwrite(m.filhand, chr(9)+send_schl) \&\& write one "tab" character first to get proper spacing
endif
$\mathrm{p}=0$
for $\mathbf{n}=\mathbf{2}$ to 9 \&\& cycle through each of the possible future years
m.yeer='m. $\mathbf{y r}$ '+alltrim($\mathbf{s t r}(\mathbf{n})$) \&\& this year selected? user's selections in field named "m.yrN"
if \&yeer \&\& if user selected this year for output, write something in Excel output file
$\mathbf{p}=\mathbf{p + 1} \quad \& \&$ increment the "number of plans written" counter
m. $\mathbf{y r}$ _txt='m.yr'+alltrim(str(n))+'_txt' $\& \&$ create year as char. string in field named "m.yrN_txt"
m.num_fld='fd_'+\&yr_txt+'_nm' \&\& set up name of field to
hold number of students for macro substitution below $\mathbf{m . p c t} \mathbf{f l d}=$ 'fd_'+\&yr_txt+'_pc' $\quad \& \&$ set up name of field to hold feed percentage for macro substitution below
$\mathbf{m . t o t} \mathbf{f l d}=$ 'm.tot'+alltrim(str(p)) $\quad \& \&$ set up name of field to hold school total for macro substitution below
$\& \&$ finish writing detail lines
$\& \&$ if now writing data for last plan, write \# and $\%$ for sending school and carriage return/line feed character
if $\mathbf{p}=\mathbf{m}$.num_plans
if typ="FS"
=fPUTS(m.filhand,chr(9)+
alltrim(str(ROUND(\&num_fld,0)))+
chr(9)+alltrim(str(round(\&pct_fld,1),5,1))
+'\%')
endif
else
\&\& if more plans follow, just write \# and \% for sending school
if typ="FS"
$=$ fwrite(m.filhand, chr(9)+
alltrim(str(ROUND(\&num_fld,0)))+ chr(9)+alltrim(str(round(\&pct_fld,1),5,1)) +'\%')
endif
endif
\&tot_fld=\&tot_fld+\&num_fld \&\& accumulate total students
"sent" to receiving school
endif
endfor
\&\& repeat above steps for each possible future year
m.num_lines=m.num_lines+1 \&\& increment "\# of sending schools written" counter
skip 1
\&\& skip ahead one record to see if receiving school is changing on next record
if not alltrim(recv_schl)==m.rcvr or EOF()
\&\& receiving school changes or no more records in file
\&\& write receiving school totals line if typ="FS"
$=$ fwrite(m.filhand,'Total'+chr(9)) \&\& start with the word "Total" and a "tab" character
for $\mathbf{p}=\mathbf{1}$ to m.num_plans $\& \&$ write totals for the receiving school for each plan
m.tot_fld='m.tot'+alltrim(str(p)) \&\& set up name of totals field for macro substitution below if $\mathbf{p}=\mathbf{m}$. num_plans $\& \&$ if now writing data for last plan, write total and carriage return/line feed character =fPUTS(m.filhand,chr(9)+ alltrim(str(ROUND(\&tot_fld,0)))+chr(9)+
'100.0\%')
else $\quad \& \&$ if more plans follow, just write total $=$ fwrite(m.filhand, chr(9)+
alltrim(str(ROUND(\&tot_fld,0)))+chr(9)+ '100.0\%')
endif
endfor $\quad \& \&$ repeat above steps for each plan
endif
for $\mathbf{p}=\mathbf{1}$ to m.num_plans $\& \&$ reset all total fields for a new receiving school
m.tot_fld='m.tot'+alltrim(str(p)) \&\& set up name of field for macro substitution on next line
\&tot_fld=0 \&\& initialize the field to 0
endfor $\quad \& \&$ repeat above steps for each plan
m.first=.t. \&\& reset "first line of output" flag for the new receiving school
m.rcvr=alltrim(recv_schl) \&\& store name of new receiving school
endif
skip -1 $\quad \& \&$ skip back to original record after "look ahead" so scan:endscan will work properly
endscan $\quad \& \&$ move on to next tempfeed.dbf record, repeat above steps until entire file has been processed
\&\& close Excel output file
\&\& switch to tempfeed data file
\&\& and close it
\&\& switch to current plan's data file
\&\& set sort order to planning polygon ID number
\&\& move record pointer to the record on which it sat
before this procedure was executed
save to fplnyrs.mem all like plan* \&\& save user's prompt screen settings to bring back next time

* $\quad \& \&$ display message on screen to tell user the name of the output file
wait window 'Data written to "'+alltrim(m.ufile)+'". '+chr(13)+
"Press any key to continue . . ."
endif
_CUROBJ=OBJNUM(M.go_to) \&\& put the screen's cursor on the "Go to" button
return $\quad \& \&$ return control to the main Whiffer screen program
procedure prt_fdr \&\& prints feeder report
m.go='Cancel' $\& \&$ initialize user action button for prompt screen
m.rept_text='Ready to print Feeder Report' \&\& initialize header for prompt screen
for $\mathbf{m}=\mathbf{0}$ to $12 \quad \& \&$ initialize grade level check boxes for prompt screen
m.gr_fld='m.g'+alltrim(str(m)) \&\& set up field name for macro substitution on next line
\&gr_fld=.f.
\&\& initialize each box as "unchecked"
endfor
m.choi=3
do oldfdr.spr
if m.go\#'Cancel'
select assignmt
m.rec=recno()
do case
\&\& initial type of report to "\% of Middle from each Elem"
$\& \&$ call the user prompt screen
$\& \&$ proceed if the user has not elected to cancel the process from the prompt screen
\&\& switch to the current plan's data file
$\& \&$ record the number of the active record so program can return to it at the end
\&\& initialize field names, report titles, and sort sequences, depending upon user's selected report
case m.choi=6 $\quad \& \&$ '\% High from each Middle'
m.field='asg.hs_home'

INDEX ON hs_home+ms_home TAG HFM_fdr ADDITIVE
m.title=' \% of High from each Middle'
case m.choi=5 \&\&'\% High from each Elem'
m.field='asg.hs_home'

INDEX ON hs_home+es_home TAG HFE_fdr ADDITIVE m.title=' \% of High from each Elementary'
case m.choi=4 \&\&'\% Middle to each High'
m.field='asg.ms_home'

INDEX ON ms_home+hs_home TAG MTH_fdr ADDITIVE m.title=' \% of Middle to each High'
case m.choi=3 \&\&'\% Middle from each Elem'
m.field='asg.ms_home'

INDEX ON ms_home+es_home TAG MFE_fdr ADDITIVE m.title='\% of Middle from each Elementary'
case m.choi=2 \&\&'\% Elem to each High'
m.field='asg.es_home'

INDEX ON es_home+hs_home TAG ETH_fdr ADDITIVE m.title=' \% of Elementary to each High'
case m.choi=1 \&\&'\% Elem to each Middle'
m.field='asg.es_home'

INDEX ON es_home+ms_home TAG ETM_fdr ADDITIVE m.title=' \% of Elementary to each Middle'
otherwise
\&\& no user choice - do nothing and return wait window "No report selected - re-run report from menu."+chr(13)+;
"Press any key to continue . . ." \&\& tell user why program is doing nothing
set order to plan_id \&\& set sort order to default goto m.rec \&\& return to previously-selected record return \&\& return control to main Whiffer screen program
endcase

* $\quad \& \&$ the following SQL select command creates a cursor with one record per receiving school,
* \&\& with the following structure:
* \&\& field 1: the name of the receiving school
* $\quad \& \&$ field 2: the sum of the user's selected HS grade levels' enrollment, across all polygons assigned to the receiving school
* $\quad \& \&$ field 3: the sum of the user's selected MS grade levels' enrollment, across all polygons assigned to the receiving school
* $\quad \& \&$ field 4: the sum of the user's selected ES grade levels' enrollment, across all polygons assigned to the receiving school
* $\quad \& \&$ this data is pulled out of the current plan file and
* $\quad \& \&$ the projections file as needed. the files are related to each other by planning polygon ID number
* $\quad \& \&$ the resulting cursor is given the name "schtot"
select alltrim(\&field) as schl, ;
iif(m.g12,sum(pp.gr12_pop),0)+;
iif(m.g11,sum(pp.gr11_pop),0)+iif(m.g10,sum(pp.gr10_pop),0)+
iif(m.g9,sum(pp.gr9_pop),0) as hs_tot, ;
iif(m.g8,sum(pp.gr8_pop),0)+iif(m.g7,sum(pp.gr7_pop),0)+
iif(m.g6,sum(pp.gr6_pop),0) as ms_tot, ;
iif(m.g5,sum(pp.gr5_pop),0)+iif(m.g4,sum(pp.gr4_pop),0)+
iif(m.g3,sum(pp.gr3_pop),0)+;
iif(m.g2,sum(pp.gr2_pop),0)+iif(m.g1,sum(pp.gr1_pop),0)+
iif(m.g0,sum(pp.gr0_pop),0) as es_tot ;
from assignmt asg,prj pp into cursor schtot where pp.plan_id=asg.plan_id group by \&field
select schtot $\quad \& \&$ make the cursor the active data file
index on schl to temp.ndx select assignmt
m.fld=substr(m.field,5)
$\& \&$ sort the file by school name
$\& \&$ make the current plan the active data file
\&\& store the "school name" field's name without the file name qualifier in "m.fld"
set relation to alltrim(\&fld) into schtot additive $\& \&$ relate the current plan file to the cursor by school name
=prt_rept("oldfdr") \&\& call the general-purpose report printing procedure to print the report form "oldfdr.frx"
set relation off into schtot $\& \&$ remove relationship between plan data file and cursor
set order to plan_id
goto m.rec
$\& \&$ reset sort sequence to default in plan file
\&\& return to previously-selected record
endif
_CUROBJ=OBJNUM(M.go_to) return
\&\& set screen's cursor to the "Go to" button
$\& \&$ return control to the main Whiffer screen
procedure exp_farm \&\& exports FARM/MSA data for the Feasibility Study document in an Excel-compatible format
* $\quad \& \&$ formulate an export filename that contains the plan name and the school level being exported
m.ufile=right(alltrim(m.pln_in_use),6)+alltrim(m.cur_lev)+".xls" \&\& use right 6 chars of plan name and two-letter school level
copy file hrdata to (ufile)
m.filhand=fopen(m.ufile,2)
\&\& copy "seed" file to export file
$\& \&$ open export file for output

```
=fchsize(m.filhand,0)
&& clear out the contents of the export file
* && write headers to output file; write export title, plan name, and current date in first line
=fPUTS(m.filhand,'FARM/MSA Data'+chr(9)+m.pln_in_use+chr(9)+chr(9)+dtoc(date()))
=fPUTS(m.filhand,')
=fPUTS(m.filhand,'School Name'+chr(9)+'FARM'+chr(9)+'MSA-Read'+chr(9)+
    'MSA-Math') && write text headers for detail lines
select sum2 && sum2 is the always-present cursor that contains the data displayed in the scrolling list at bottom of main Whiffer screen
scan && read the records in the cursor one school at a time
* && write the detail lines to the output file as data are read from the cursor
* && detail lines contain: school name, FARM %, MSA Reading pass rate, MSA
                        Math pass rate
    =fPUTS(m.filhand,schl+chr(9)+padl(alltrim(str(round(farm_pct/100,2),4,2)),4,' ')+
        chr(9)+padl(alltrim(str(round(read_avg,2),4,2)),4,' ')+;
        chr(9)+padl(alltrim(str(round(math_avg,2),4,2)),4,' '))
endscan && continue to output detail lines until last record of cursor, i.e. last school, is
        processed
goto top && return record pointer to top record in cursor
select prj && switch to the projections data file
m.popfld="m."+alltrim(m.cur_lev)+'_pop' && set up field name for macro
                                    substitution below
do case && set up text strings for macro substitution below
case alltrim(m.cur_lev)='ES' && user requests elementary school report
    m.grdtxt="gr0_pop+gr1_pop+gr2_pop+gr3_pop+gr4_pop+gr5_pop" && text string
    containing expression to use for calculating ES enrollment
    m.frmtxt="es_farm+ks_farm" && text string containing expression to use for
    calculating ES FARM enrollment
case alltrim(m.cur_lev)='MS' && user requests middle school report
        m.grdtxt="gr6_pop+gr7_pop+gr8_pop" && text string containing expression to use
                                    for calculating MS enrollment
        m.frmtxt="ms_farm" && text string containing expression to use for
        calculating ES FARM enrollment
case alltrim(m.cur_lev)='HS' && user requests high school report
    m.grdtxt="gr9_pop+gr10_pop+gr11_pop+gr12_pop" && text string containing
    expression to use for calculating HS enrollment
    m.frmtxt="hs_farm" && text string containing expression to use for
    calculating ES FARM enrollment
```

endcase
sum \&grdtxt to m.lev_pop
sum \&frmtxt to m.farm_pop
\&\& calculate total enrollment for user-selected school level \&\& calculate total FARM enrollment for user-selected school level
$\mathbf{m} . \mathbf{f a r m}$ _pct=m.farm_pop/m.lev_pop $\quad \& \&$ calculate overall FARM percentage for userselected school level
m.mtdbfld=alltrim(m.cur_lev)+'_take_ma' \&\& set up database field name for number of MSA Math test takers
m.mtmfld="m."+alltrim(m.cur_lev)+'_tk_ma' \&\& set up memvar field name for number of

MSA Math test takers
sum \&mtdbfld to \&mtmfld
\&\& calculate overall number of MSA Math test takers m.mpdbfld=alltrim(m.cur_lev)+'_pass_ma' \&\& set up database field name for number of MSA Math test passers
m.mpmfld="m."+alltrim(m.cur_lev)+'_ps_ma' \&\& set up memvar field name for number of MSA Math test passers
sum \&mpdbfld to \&mpmfld $\quad \& \&$ calculate overall number of MSA Math test passers m.rtdbfld=alltrim(m.cur_lev)+'_take_re' $\& \&$ set up database field name for number of MSA Reading test takers
m.rtmfld="m."+alltrim(m.cur_lev)+'_tk_re' \&\& set up memvar field name for number of MSA Reading test takers
sum \&rtdbfld to \&rtmfld \&\& calculate overall number of MSA Reading test takers m.rpdbfld=alltrim(m.cur_lev)+'_pass_re' \&\& set up database field name for number of MSA Reading test passers
m.rpmfld="m."+alltrim(m.cur_lev)+'_ps_re' \&\& set up memvar field name for number of MSA Reading test passers
sum \&rpdbfld to \&rpmfld
m.read_avg=\&rpmfld/\&rtmfld
m.math_avg=\&mpmfld/\&mtmfld
=fPUTS(m.filhand,"")
\&\& calculate overall number of MSA Reading test passers \&\& calculate overall MSA Math pass rate \&\& calculate overall MSA Reading pass rate \&\& write a blank line to output file

* $\quad \& \&$ write summary line to output file; summary contains the overall totals calculated above
=fPUTS(m.filhand,"System-wide total"+chr(9)+
padl(alltrim(str(round(m.farm_pct,2),4,2)),4,' ')+chr(9)+;
padl(alltrim(str(round(m.read_avg,2),4,2)),4,' ')+chr(9)+;
padl(alltrim(str(round(m.math_avg,2),4,2)),4,' '))
select assignmt $\quad \& \&$ switch to currently-active plan file
_CUROBJ=OBJNUM(M.go_to) \&\& move screen's cursor to the "Go to" button
$=$ fclose(m.filhand) $\quad \& \&$ close the output file
* $\quad \& \&$ notify user that processing is done and display the name of the output file on the screen
wait window 'Data written to "'+alltrim(m.ufile)+'". '+chr(13)+
"Press any key to continue . . ."
return $\quad \& \&$ return control to the main Whiffer screen program
procedure incl_k \&\& refreshes main Whiffer screen contents when user selects/deselects "Incl K" check box
* \&\& build appropriate text string for text color, per user's selection (red if K included, black otherwise)
m.clr=iif(m.k_in,"COLOR RGB(255,0,0,,,,)","") \&\& (black text is default if no color specified)
@ 8.0,87.5 clear to 9.077,120.667 \&\& clear existing text for projected enrollment
* $\quad \& \&$ redisplay appropriate projected enrollments, in appropriate color
@ 8.0,87.5 SAY round(iif(m.k_in,prj.ksproj1+prj.esproj1,prj.esproj1),0) ;
SIZE 1.000,4.000,0.000 FONT "Arial", 8 STYLE "T" \&clr
@ 8.0,91.667 SAY round(iif(m.k_in,prj.ksproj2+prj.esproj2,prj.esproj2),0) ;

SIZE 1.000,4.000,0.000 FONT "Arial", 8 STYLE "T" \&clr
@ 8.0,95.833 SAY round(iif(m.k_in,prj.ksproj3+prj.esproj3,prj.esproj3),0) ; SIZE 1.000,4.000,0.000 FONT "Arial", 8 STYLE "T" \&clr
@ 8.0,100.000 SAY round(iif(m.k_in,prj.ksproj4+prj.esproj4,prj.esproj4),0) ; SIZE 1.000,4.000,0.000 FONT "Arial", 8 STYLE "T" \&clr
@ 8.0,104.167 SAY round(iif(m.k_in,prj.ksproj5+prj.esproj5,prj.esproj5),0) ; SIZE 1.000,4.000,0.000 FONT "Arial", 8 STYLE "T" \&clr
@ 8.0,108.333 SAY round(iif(m.k_in,prj.ksproj6+prj.esproj6,prj.esproj6),0) ;
SIZE 1.000,4.000,0.000 FONT "Arial", 8 STYLE "T" \&clr
@ 8.0,112.500 SAY round(iif(m.k_in,prj.ksproj7+prj.esproj7,prj.esproj7),0) ; SIZE 1.000,4.000,0.000 FONT "Arial", 8 STYLE "T" \&clr
@ 8.0,116.667 SAY round(iif(m.k_in,prj.ksproj8+prj.esproj8,prj.esproj8),0) ; SIZE 1.000,4.000,0.000 FONT "Arial", 8 STYLE "T" \&clr
@ 13.385,90.667 clear to $15.399,95.333 \quad \& \&$ clear existing tewxt for FARM pop/pct

* \&\& redisplay appropriate FARM enrollments and \%, in appropriate color
@ 13.385,91.5 SAY prj.es_farm+iif(m.k_in,prj.ks_farm,0) ; SIZE 1.000,3.833 FONT "Arial", 8 STYLE "T" \&clr
@ 14.385,90.833 SAY round(iif(m.k_in,iif(prj.esproj0+
prj.ksproj0 $=0,0,($ prj.es_farm+prj.ks_farm) $* 100 /$;
(prj.esproj0+prj.ksproj0)),prj.esfrm_pct),0) SIZE 1.000,4.833 FONT "Arial", 8 STYLE "T" \&clr
@ 16.077,47.5 clear to 17.5,51.333 \&\& clear existing text for current enrollments
* \&\& redisplay appropriate current enrollments, in appropriate color
@ 16.077,47.500 SAY iif(m.k_in,prj.gr0_pop,0)+prj.gr1_pop+prj.gr2_pop+prj.gr3_pop+; prj.gr4_pop+prj.gr5_pop SIZE 1.000,3.667 FONT "Arial", 10 STYLE "BT" \&clr
* \&\& call the "get_stat" procedure to refresh the contents of the scrolling schools list at the bottom of the Whiffer screen
=get_stat(m.cur_lev)
save to \mathbf{k}. mem all like $\mathbf{k}_{\text {_in }} \quad \& \&$ save user's setting of "include K" box
return $\quad \& \&$ return control to the main Whiffer screen
procedure updtdesc $\quad \& \&$ updates the plan description
* \&\& when the user selects the "Add/Modify Plan Description Text" option from the Maintenance menu
m.go='Cancel'
m.rec=recno()
m.desc=assignmt.desc
do updtdesc.spr
if m.go\#'Cancel'
\&\& initialize user action button for prompt screen
\&\& save the record number of the current record for later return
\&\& copy the current plan description text to a memvar
$\& \&$ display the screen where the description can be modified
$\& \&$ if the user does not choose to cancel, proceed
* \&\& replace the current description with the one entered by the user on the prompt screen replace all assignmt.desc with m.desc
goto m.rec $\quad \& \&$ go back to the original record show gets $\quad \& \&$ refresh the screen with the contents of the original record
endif
return
\&\& return control to the main Whiffer screen program

* $\quad \& \&$ if the current and previous plans are the same, move on to the next year
* $\quad \& \&$ if the two years' plans are different, open the current plan data file in the new work area
if $\mathbf{m . d b}=\mathbf{m} . \mathbf{p r v d b}$
loop \&\& exit the "for" loop and return to the "for" command for next iteration
else \&\& there are two different plans selected by the user in consecutive years file and continue
endif
set relation to plan_id into pp
replace all es_movd with .f.
\&\& both plans are the same, therefore nothing to mark because nothing moved

use \&db exclusive alias asg \&\& open the current year's plan data

\&\& relate the current plan to the previous one by planning polygon ID number \&\& set ES "moved" flags to "not moved" on all polygon records

* $\quad \& \&$ if the same polygon is assigned to different ES in the two years' plans, reset "moved" flag to "moved"
replace es_movd with .t. for alltrim(asg.es_home)\#alltrim(pp.es_home)
count for es_movd to m.es_moved \&\& store the number of polygons moved at the ES level
replace all ms_movd with .f. \&\& set MS "moved" flags to "not moved" on all polygon records
* \&\& if the same polygon is assigned to different MS in the two years' plans, reset "moved" flag to "moved"
replace ms_movd with .t. for alltrim(asg.ms_home)\#alltrim(pp.ms_home) count for ms_movd to $\mathbf{m} . m s _m o v e d \quad \& \&$ store the number of polygons moved at the MS level
replace all hs_movd with .f. $\quad \& \&$ set HS "moved" flags to "not moved" on all polygon records
* $\quad \& \&$ if the same polygon is assigned to different HS in the two years' plans, reset "moved" flag to "moved"
replace hs_movd with .t. for alltrim(asg.hs_home)\#alltrim(pp.hs_home)
count for hs_movd to m.hs_moved \&\& store the number of polygons moved at the MS level
* $\quad \& \&$ display the number of moves at each school level to user
wait window alltrim(str(m.es_moved))+
' polygons moved at the ES level,'+chr(13)+;
alltrim(str(m.ms_moved))+
' polygons moved at the MS level, and'+chr(13)+;
alltrim(str(m.hs_moved))+
' polygons moved at the HS level in '+alltrim(\&plan)+chr(13)+;
"Press any key to continue . . ."
use $\quad \& \&$ close the current plan data file
select pp $\quad \& \&$ switch to previous plan's work area
use $\quad \& \&$ close the previous plan data file
endfor $\quad \& \&$ repeat the above steps for each possible future year
wait window "Done - press any key to continue . . ." \&\& let user know process is finished
close databases $\quad \& \&$ close all data files
$=$ setup() $\quad \& \&$ call the "setup" procedure to restore the default data environment
* $\quad \& \&$ re-establish the browse window in the lower half of the main Whiffer screen
define window browind from $20.5,1.4$ to $\mathbf{3 9 , 1 1 8 . 1 5}$ nofloat close none
font 'MS Sans Serif', 8 in window polyback
* \&\& call the "get_stat" procedure to refresh the contents of the scrolling schools list at the bottom of the Whiffer screen
=get_stat(m.cur_lev)
endif
save to plnyrs.mem all like plan*
\&\& save the user's settings on the prompt screen for next time

_CUROBJ=OBJNUM(M.go_to) \&\& move the screen's cursor to the "Go to" button

return $\quad \& \&$ return control to the main Whiffer screen program
procedure new_cip \&\& clones the currently-selected CIP as a new CIP file and makes the new one the current CIP selection

* $\quad \& \&$ when user selects the "Create New School Capacity Table" option from the Maintenance menu
m.newname='new_cip' $\quad \& \&$ initialize "new name" field for prompt screen
m.go='Cancel' $\& \&$ initialize user action button for prompt screen
do newcip.spr $\quad \& \&$ call the user prompt screen
if $\mathbf{m . g o \#}$ 'Cancel' $\quad \& \&$ if the user does not choose to cancel, proceed
select schools $\quad \& \&$ select the current CIP data file
m.dot=rat(".",dbf()) \&\& store the position of the last "period" character in the current CIP's full file name
m.last_slash=rat("\",dbf()) \&\& store the position of the last "backslash" character in the current CIP's file name
* \&\& extract the data path from the full file name as the text from position 1 to the position of the last backslash
m.path=substr(dbf(),1,m.last_slash)
* $\quad \& \&$ extract the old CIP file name from the full file name as the text from position 1 to the position of the last period
m.oldname=substr(dbf(),1,m.dot)
copy structure with production to (newname) \&\& create a new file with the user's
specified name and identical structure
m.newname=m.path+alltrim(m.newname)+'.' $\quad \& \&$ add the data path and a "period" to the new CIP file name
* $\quad \& \&$ copy the old CIP's shape file components to new shape files with the new CIP name copy file m.oldname+'shp' to m.newname+'shp' copy file m.oldname+'shx' to m.newname+'shx' m.newname=alltrim(m.newname)+'dbf' $\quad \& \&$ assemble the name of the. dbf file for the new CIP for macro substitution
use (newname) exclusive m.oldname=m.oldname+'dbf'
\&\& open the new CIP data file $\& \&$ assemble the name of the .dbf file for the old

procedure get_stat $\quad \& \&$ refreshes the contents of the scrolling schools list at the bottom of the main Whiffer screen
parameters lev \&\& the calling procedure specifies which school level the user desires to refresh in the browse window
m.cur_lev=lev \&\& change the value of the Whiffer environment memvar to reflect the user's choice
for $\mathbf{n}=2$ to $13 \quad \& \&$ set up fields for later macro substitution and initialize them
* $\quad \& \&$ create a field, one per future year, to hold the name of the school capacity field m.cap='m.c'+alltrim(str(n))
* $\quad \& \&$ store the name of the appropriate capacity field and add file name qualifier \&cap='s.'+iif(lev='ES' and m.k_in,'kcap','cap')+alltrim(str(n))
* \&\& create a field to hold enrollment projections m.pop='m.p'+alltrim(str(n))
* $\quad \& \&$ store the name of the appropriate projection field and add file name qualifier \&pop='pp.'+alltrim(m.lev)+'proj'+alltrim(str(n))
* \&\& create a field to hold kindergarten enrollment projections m.kpop='m.k'+alltrim(str(n))
* $\quad \& \&$ store the name of the appropriate kindergarten projection field and add file name

* $\quad \& \&$ and school name. The resulting cursor is given the name "sum2", and
* $\quad \& \&$ is kept open in a work area the entire time that the Whiffer is operating
select trim(\&feeld) as schl,100*((sum(\&farm)+iif(lev='ES' and m.k_in,sum(\&kfarm),
$0)$)/sum(\&tpop)) as farm_pct;
sum(\&mps)/sum(\&mtk) as math_avg,sum(\&rps)/sum(\&rtk) as read_avg ;
from schools s,assignmt asg,prj pp into cursor sum2 ;
where pp.plan_id=asg.plan_id and trim(\&feeld)=trim(s.schl_name) ;
group by \&feeld
* $\quad \& \&$ the following SQL select command creates a cursor with one record per school of the user's selected level,
* $\quad \& \&$ with the following structure:
* $\quad \& \&$ field 1: the name of the school
* $\quad \& \&$ field 2: the current enrollment of the school
* $\quad \& \&$ field 3: the current FARM enrollment of the school
* $\quad \& \&$ fields 4 through 15: future projected enrollments of the school
* $\quad \& \&$ field 16: the school's FARM percentage
* $\quad \& \&$ field 17: the school's number of MSA Math test passers
* \&\& field 18: the school's number of MSA Math test takers
* $\quad \& \&$ field 19: the school's MSA Math test pass percentage
* \&\& field 20: the school's number of MSA Reading test passers
* \&\& field 21: the school's number of MSA Reading test takers
* $\quad \& \&$ field 22: the school's MSA Reading test pass percentage
* $\quad \& \&$ This data is pulled out of the current plan file, the schools file, and
* $\quad \& \&$ the projections file as needed. The files are related to each other by planning polygon ID number
* \&\& and school name. The resulting cursor is given the name "sumcur", and
* $\quad \& \&$ is kept open in a work area the entire time that the Whiffer is operating
select count(asg.plan_id) as num_poly,;
trim(\&feeld) as schl,;
sum(pp.studnt_pop) as num_stud,;
sum(\&farm)+iif(lev='ES' and m.k_in,sum(\&kfarm),0) as num_farm,;
round(100*(sum(\&p2+\&k2))/\&c2,1) as u1,;
round(100*(sum(\&p3+\&k3))/\&c3,1) as u2,;
round(100*(sum(\&p4+\&k4))/\&c4,1) as u3,;
round(100*(sum(\&p5+\&k5))/\&c5,1) as u4,;
round(100*(sum(\&p6+\&k6))/\&c6,1) as u5,;
round(100*(sum(\&p7+\&k7))/\&c7,1) as u6,;
round(100*(sum(\&p8+\&k8))/\&c8,1) as u7,;
round(100*(sum(\&p9+\&k9))/\&c9,1) as u8,;
round(100*(sum(\&p10+\&k10))/\&c10,1) as u9,;
round(100*(sum(\&p11+\&k11))/\&c11,1) as u10,;
round(100*(sum(\&p12+\&k12))/\&c12,1) as u11,;
round(100*(sum(\&p13+\&k13))/\&c13,1) as u12,;
100*((sum(\&farm)+iif(lev='ES' and m.k_in,
sum(\&kfarm),0))/sum(\&tpop)) as farm_pct,;
sum(\&mps) as pas_math,;
sum(\&mtk) as tak_math,;
sum(\&mps)/sum(\&mtk) as math_avg,;
sum(\&rps) as pas_read,;
sum(\&rtk) as tak_read;;
sum(\&rps)/sum(\&rtk) as read_avg ;
from schools s,assignmt asg,prj pp into cursor sumcur ;
where pp.plan_id=asg.plan_id and trim(\&feeld)=trim(s.schl_name) ;
group by \&feeld
select sumcur $\quad \& \&$ make the "sumcur" cursor the active data file
* \&\& activate a browse list of the cursor's records in a window previously established at the bottom of the main Whiffer screen
browse fields pol=padl(alltrim(str(num_poly)),5,' ') :6:H='\#Polys',;
schl :20 :H='SCHOOL',;
free=padl(alltrim(str(farm_pct,4,1)),5,' ')+'\%' :7 :H='FARM',;
msa_r=padl(alltrim(str(read_avg*100,4,1)),5,' ')+' \%' :8:H='MSA R',;
msa_m=padl(alltrim(str(math_avg*100,4,1)),5,' ')+'\%' :8
:H='MSA M',;
u1 :5:H=str(m.yr+1,4),;
u2 :5 : $\mathrm{H}=\mathrm{str}(\mathrm{m} . \mathrm{yr}+2,4)$,;
u3 :5:H=str(m.yr+3,4),;
u4 :5 : $\mathrm{H}=\mathrm{str}(\mathrm{m} . \mathrm{yr}+4,4$),;
u5 :5:H=str(m.yr+5,4),;
u6 :5 : $\mathrm{H}=\mathrm{str}(\mathrm{m} . \mathrm{yr}+6,4)$,;
u7 :5 : $\mathrm{H}=\mathrm{str}(\mathrm{m} . \mathrm{yr}+7,4)$,;
u8 :5:H=str(m.yr+8,4),;
u9 :5 : $\mathrm{H}=\mathrm{str}(\mathrm{m} . \mathrm{yr}+9,4)$,;
u10 :5:H=str(m.yr+10,4),;
u11 :5 : $\mathrm{H}=\mathrm{str}(\mathrm{m} . \mathrm{yr}+11,4)$,;
u12 :5 : $\mathrm{H}=\mathrm{str}(\mathrm{m} . \mathrm{yr}+12,4$) ;
title 'School Demographics and Projected Utilization for This Plan' window browind in window polyback nowait save ;
noedit nodelete noappend nomenu
select assignmt
_CUROBJ=OBJNUM(M.go_to)
save to lev.mem all like cur_lev
\&\& switch to currenlty-selected plan data file
\&\& move Whiffer screen's cursor to the "Go to" button \&\& save the user's settings (i.e. which school level to display in browse) for future use
return \&\& return to calling procedure
\&\& sets all school assignments in the currently-selected plan back to the projection file's school assignments
\&\& when user selects the "Revert Displayed Plan to Curr. Assignments" option from the Maintenance menu
select assignmt
m.rec=recno()
\&\& switch to the current plan's data file
$\& \&$ save the record number of the polygon that is currently displayed on the Whiffer screen
* $\quad \& \&$ replace the current plan's schools with the schools from the projection file
* $\quad \& \&$ the projections file is already linked to the plan file by ID number; the projection file has the current school
* \&\& assignments embedded in each polygon's record
replace all hs_home with prj.hs_home,ms_home with prj.ms_home, es_home with prj.es_home
goto m.rec $\quad \& \&$ return to the record that is displayed =showgets() $\quad \& \&$ refresh the contents of the main Whiffer screen
* \&\& call the "get_stat" procedure to refresh the contents of the scrolling schools list at the bottom of the Whiffer screen
=get_stat(m.cur_lev)
return
procedure pop_phas $\& \&$ opens a pop-up list of comments when the user clicks on the data entry field next to the "Phasing" header

_curobj=objnum(m.go_to) \&\& move screen's cursor to "Go to" button
show get phaseout $\& \&$ refresh contents of phasing field displayed on the Whiffer screen

return

\&\& return control to the main Whiffer screen program
procedure pop_when $\quad \& \&$ opens a pop-up list of schools when the user clicks on one of the data entry field under the school headers

* | \&\& and updates the contents of the appropriate field in the current plan |
| :--- |
| file when the user selects an entry |
| \&\& from the pop-up list |
| \&\& the name of the data entry field the user is currently attempting to |
| update |

\&\& this value is passed to this procedure when the procedure is called

* from the "When" code snippet
do case $\quad \& \&$ check for conditions that require a user warning:
* $\quad \& \&$ if the polygon being moved contains the school, do not allow school field to be changed
case (alltrim(m.cur_lev)='ES' and es_loc) or
(alltrim(m.cur_lev)='MS' and ms_loc) or
(alltrim(m.cur_lev)='HS' and hs_loc)
* \&\& notify user that he has messed up
wait window "This polygon contains the school you are changing!"+chr(13)+;
"IT CANNOT BE REDISTRICTED, AS THE WHIFFER
CURRENTLY OPERATES"+chr(13)+;
"Press any key to continue . . ."
m.cur_lev=alltrim(m.cur_lev) \&\& restore original value of m.cur_lev
return $\quad \& \&$ don't open pop-up and return control to the main Whiffer screen program
* \&\& if the polygon is part of the sending school's walk area, warn the user but allow them to proceed
case (alltrim(m.cur_lev)='ES' and alltrim(in_es_walk)\$'PW') or (alltrim(m.cur_lev)='MS' and alltrim(in_ms_walk)\$'PW') or ;
(alltrim(m.cur_lev)='HS' and alltrim(in_hs_walk)\$'PW')
* $\quad \& \&$ warn user that he may be messing up
wait window "This polygon is a part of the walk area for the school you are
changing!"+chr(13)+;
"Press any key to continue . . ."
* \&\& program continues after "endcase"
endcase
* $\quad \& \&$ if the polygon was previously redistricted, warn the user but allow them to proceed
* \&\& period of reckoning is 5 yrs for ES, 2 yrs for MS, and 3 yrs for HS
if (alltrim(m.cur_lev)='ES' and lst_es_red>0 and lst_es_red+5>year(date())) or ; (alltrim(m.cur_lev)='MS' and lst_ms_red>0 and lst_ms_red+2>year(date())) or ; (alltrim(m.cur_lev)='HS' and lst_hs_red>0 and lst_hs_red+3>year(date()))
* $\quad \& \&$ warn user that he may be messing up
wait window "This polygon was redistricted previously in "+ iif(alltrim(m.cur_lev)='ES',alltrim(str(lst_es_red)),; iif(alltrim(m.cur_lev)='MS',alltrim(str(lst_ms_red)), alltrim(str(lst_hs_red))))+"!"+; chr(13)+"Press any key to continue . . ."
endif
declare schl_ara(1) \&\& initialize an array to hold school names
store '(table is empty)' to schl_ara[1] \&\& store a default value in case nothing loads from file on next line
* \&\& load array with names of appropriate level schools
select schl_name from schools into array schl_ara having m.cur_lev\$schl_name
=asort(schl_ara,1) \&\& sort array entries alphabetically
m.width $=\mathbf{m i n}\left(\mathbf{f s i z e}\left(\right.\right.$ ' $\left.\left.\& \mathbf{f l d} \mathbf{'}^{\prime}\right)+\mathbf{3 , 1 0 1}\right) \quad \& \&$ set width of pop-up window to smallest of field length or 101 characters
* $\quad \& \&$ define the window in which to open the pop-up
define window list at 0,0 size $\mathbf{1 0 , 3 0}$ system ;
title 'dbl-click=select;esc=cancel' font 'MS Sans Serif',10 in window (woutput())
move window list center \&\& center the pop-up window on the screen
activate window list $\& \&$ make the pop-up window the active control surface
* $\quad \& \&$ if there is already an entry in the school field and it matches an entry in the pop-up list
if not empty(\&fld) .and. ascan(schl_ara,\&fld) >0
m.chce=asubscript(schl_ara,ascan(schl_ara,\&fld,1),1) \&\& highlight the matching entry in the pop-up list
else \&\& no entry or entry doesn't match
M.chce=1 \&\& highlight the first entry in the pop-up list
endif
* \&\& open the pop-up list for user selection
@0,0 get m.chce from schl_ara picture '@\&T' default 1 range 1 size 10,30
font 'MS Sans Serif',10
read \&\& store the user-selected entry when the pop-up is closed
release window list \&\& close the browse window
if readkey()=12 or readkey()=268 or readkey()=270 \&\& if the user cancels via Esc key or just closes window
* do nothing *
else $\quad \& \&$ closing pop-up by any other means assumed to mean "save changes" replace \&fld with alltrim(schl_ara[m.chce,1]) \&\& replace current contents of assigned school field with user-selected entry
* $\quad \& \&$ the following do case:endcase segment clears or resets the contents of the polygon's data field that indicates
* \&\& which school's walk area, if any, the polygon lies within. For example, if the contents of the "walk_es" field match the
* \&\& newly-assigned ES school, then the contents of the "old_wlk_es" field ("W" or "P") are copied to the "in_es_walk" field.
* $\quad \& \&$ If the newly-assigned school doesn't match the stored walk area school, the "in_es_wlk" field is cleared.
* \&\& Similar processes are followed for MS and HS fields.
do case
case alltrim(m.cur_lev)='ES'
replace in_es_walk with
iif(alltrim(walk_es)==alltrim(es_home),old_wlk_es,'')
case alltrim(m.cur_lev)='MS'
replace in_ms_walk with
iif(alltrim(walk_ms)==alltrim(ms_home),old_wlk_ms,'')
case alltrim(m.cur_lev)='HS'
replace in_hs_walk with
iif(alltrim(walk_hs)==alltrim(hs_home),old_wlk_hs,'')
endcase
endif
m.cur_lev=alltrim(m.cur_lev) \&\& restore the value of m.cur_lev to its former format
* \&\& call the "get_stat" procedure to refresh the contents of the scrolling schools list at the bottom of the Whiffer screen
=get_stat(m.cur_lev)
_curobj=objnum(m.go_to) \&\& move Whiffer screen's cursor to the "Go to" button
m.fld='assignmt.'+m.fld $\quad \& \&$ set up field name for macro substitution on next line
show get \&fld $\quad \& \&$ refresh contents of school assignment field on screen
DO CASE $\& \&$ refresh contents of appropriate flags related to school assignments
case alltrim(m.cur_lev)='HS' \&\& a high school assignment was changed
@ 2.6,22.9 clear to 3.7,40 \&\& clear old values from the display area
* \&\& display current value for last year redistricted at this level
@ 2.615,23.000 SAY Ist_hs_red SIZE 1.000,5.600 FONT "Arial", 8 STYLE "BT" PICTURE "@Z" COLOR RGB(255,0,0,,,,)
* \&\& display current value for "polygon contains the school" field
@ 2.615,29.167 SAY iif(hs_loc,'Hm','') SIZE 1.000,4.600 FONT "Arial", 8 STYLE "BT" PICTURE "@I" COLOR RGB(255,0,0,,,,)
* \&\& display current value for "polygon contains the walk area" field
@ 2.615,34.500 SAY iif(in_hs_walk='W','Wlk',iif(in_hs_walk='P','PtW','')) ; SIZE 1.000,5.000 FONT "Arial", 8 STYLE "BT" PICTURE "@I" COLOR RGB(255,0,0,,,,)
case alltrim(m.cur_lev)='MS' \&\& a middle school assignment was changed
@ 2.6,56.9 clear to 3.7,75 \&\& clear old values from the display area
* \&\& display current value for last year redistricted at this level
@ 2.615,57.000 SAY lst_ms_red SIZE 1.000,5.600 FONT "Arial", 8 STYLE "BT" PICTURE "@Z" COLOR RGB(255,0,0,,,,)
* $\quad \& \&$ display current value for "polygon contains the school" field
@ 2.615,63.167 SAY iif(ms_loc,'Hm',') SIZE 1.000,4.600 FONT "Arial", 8 STYLE "BT" PICTURE "@I" COLOR RGB(255,0,0,,,,)
* $\quad \& \&$ display current value for "polygon contains the walk area" field
@ 2.615,68.5 SAY iif(in_ms_walk='W','Wlk',iif(in_ms_walk='P','PtW','')) ; SIZE 1.000,5.000 FONT "Arial", 8 STYLE "BT" PICTURE "@I" COLOR RGB(255,0,0,,,,
case alltrim(m.cur_lev)='ES' \&\& an elementary school assignment was changed
@ 2.6,86.8 clear to 3.7,105 \&\& clear old values from the display area
* \&\& display current value for last year redistricted at this level
@ 2.615,86.833 SAY Ist_es_red SIZE 1.000,5.600 FONT "Arial", 8 STYLE "BT" PICTURE "@Z" COLOR RGB(255,0,0,,,,)
* \&\& display current value for "polygon contains the school" field
@ 2.615,93 SAY iif(es_loc,'Hm',') SIZE 1.000,4.600 FONT "Arial", 8 STYLE "BT" PICTURE "@I" COLOR RGB(255,0,0,,,,)
* \&\& display current value for "polygon contains the walk area" field
@ 2.615,98.33 SAY iif(in_es_walk='W','Wlk',iif(in_es_walk='P','PtW','')) ; SIZE 1.000,5.000 FONT "Arial", 8 STYLE "BT" PICTURE "@I" COLOR RGB(255,0,0,,,,)
endcase
return \&\& return control to the main Whiffer screen program
procedure prt_ppsm
parameters lev
m.go='Cancel'
m.sum='Yes'
m.sum= Yes $\quad \& \&$ initialize value of the "summary only" control for the prompt screen
$\mathbf{m . d e m}=' Y e s ' ~ \& \&$ initialize value of the "include demographics" control for the prompt screen m.rept_text='Ready to print Planning Polygon Summary by '+alltrim(lev) \&\& compose title for prompt screen
do pol_prpt.spr $\& \&$ call the prompt screen
if m.go\#'Cancel' \&\& if the user has not elected to cancel the process on the prompt screen, continue select assignmt $\quad \& \&$ make sure the currently-selected plan is the active data file $\mathbf{m} \cdot \mathbf{r e c}=\mathbf{r e c n o ()} \quad \& \&$ save the reord number of the polygon whose data is displayed
* $\quad \& \&$ recreate the relevant indexes

INDEX ON es_home+STR(plan_id) TAG Es ADDITIVE INDEX ON ms_home+STR(plan_id) TAG Ms ADDITIVE INDEX ON hs_home+STR(plan_id) TAG Hs ADDITIVE set order to \&lev $\& \&$ sort the plan file according to the user's requested report =prt_rept("planxsch"+iif(m.sum='Yes',' summary','')) \&\& call the general-purpose report printing procedure to print report form "planxsch.frx" set order to plan_id \&\& restore sort sequence to planning polygon ID number goto m.rec $\& \&$ reset record pointer to record whose data is displayed
endif
_CUROBJ=OBJNUM(M.go_to) \&\& move Whiffer screen's cursor to "Go to" button
return $\& \&$ return control to the main Whiffer screen program
procedure mntphs \&\& opens the contents of the phasing text file for editing in a browse window

\&	\&\& when user selects the "Set up Phase-In Text Entries" option from the Maintenance menu
if used('phs_text')	\&\& if phasing text file is already in use
select phs_text	\&\& make it the active data file

else
select $0 \quad \& \&$ otherwise, open a new work area
endif
use phs_text exclusive \&\& open or re-open the pahsing text file for exclusive use by user browse $\quad \& \&$ display its contents in a simple browse window for editing use $\quad \& \&$ close the phasing text data file when the user is done editing return $\quad \& \&$ return control to the main Whiffer screen program
procedure mntschl \&\& opens the contents of the currently-selected CIP file for editing in a browse window
parameters use

* \&\& "use" parameter indicates how this procedure is to be used -
* \&\& "upd" means user selected the "Modify School Capacities" option from the Maintenance menu
* \&\& "prt" means user selected the "Print School Capacity Table" option from the Reports menu
for $\mathbf{n = 1}$ to 13 \&\& set up browse window's headers for each calendar year
$\mathbf{m} . \mathbf{h d r}=' \mathbf{m} . \mathbf{h}^{\prime}+$ alltrim(str(n)) $\quad \& \&$ one set for "without K" capacity
\&hdr=alltrim(str(m.yr-1+n))
m.khdr='m.k'+alltrim(str(n)) \&\& one set for "with K" capacity
\&khdr='K'+alltrim(str(m.yr-1+n))
endfor
if use='upd' \&\& i.e. procedure was called to allow user to modify capacities
* $\quad \& \&$ close all instances of CIP data file currently in use
select his
use
select mis
use
select els
use
select schools
use (cur_cip) order level exclusive $\quad \& \&$ open the currently-selected CIP data file for exclusive use
* $\quad \& \&$ set up a window in which to open the browse list
define window browsit from $\mathbf{0 , 0}$ to $\mathbf{4 0 , 8 5}$ float grow close none font 'MS Sans Serif',8
* $\quad \& \&$ display CIP file's contents in a formatted browse window for editing
browse fields schl_name :16,cap1 :4:H=m.h1,cap2 :4:H=m.h2,
сар3 :4:H=m.h3,cap4 :4:H=m.h4,;
cap5 :4 :H=m.h5,cap6 :4 :H=m.h6,cap7 :4:H=m.h7,cap8 :4 :H=m.h8,;
cap9 :4:H=m.h9,cap10 :4 :H=m.h10,cap11 :4 :H=m.h11, cap12 :4 :H=m.h12,cap13 :4 :H=m.h13,;
kcap1 : 6 :H=m.k1,kcap2 :6 :H=m.k2,kcap3 :6:H=m.k3,kcap4 :6 :H=m.k4,;
kcap5 :6 :H=m.k5,kcap6 :6 :H=m.k6,kcap7 :6 :H=m.k7,kcap8 :6 :H=m.k8,;
kcap9 :6 :H=m.k9,kcap10 :6 :H=m.k10,kcap11 :6 :H=m.k11,
kcap12 :6 :H=m.k12,kcap13 :6 :H=m.k13 ;
noappend nodelete title upper(alltrim(m.cip_in_use))+

```
    " SCHOOL CAPACITIES on SEPT 30th - Press Ctrl-End to save;
    Esc to cancel" ;
    window browsit
    use (cur_cip) ALIAS schools ORDER TAG "name" && re-open CIP as "schools"
    select 0 && open a new work area
    * && open the CIP data file as "his", filtered to show HS data only
    USE (cur_cip) again ALIAS his ORDER TAG "hs_only"
    SELECT 0 && open a new work area
    * && open the CIP data file as "mis", filtered to show MS data only
    USE (cur_cip) again ALIAS mis ORDER TAG "ms_only"
    SELECT 0 && open a new work area
    * && open the CIP data file as "els", filtered to show ES data only
    USE (cur_cip) again ALIAS els ORDER TAG "es_only"
    SELECT prj && switch to the projections data file
    * && relate the projections file into each of the three single-level versions of the
    CIP file, by school name
    set relation to alltrim(hs_home) into his,alltrim(ms_home) into mis,
    alltrim(es_home) into els
    else && user wants to print contents of CIP
    select schools && switch to the currently-selected CIP data file
    set order to level && sort by level, then school name within level
    =prt_rept('cap_list') && call the general-purpose report printing procedure to print
    report form "cap_list.frx"
    set order to name && change sort sequence to default: school name
    endif
    select assignmt && switch to currently-selected plan file
    return && return to main Whiffer screen program
procedure showgets
\&\& refreshes display of data and controls on main Whiffer screen
* \&\& call the "setnavbutn" procedure to refresh the settings of the navigation buttons in the middle of the Whiffer screen
    =setnavbutn()
    m.go_to=assignmt.plan_id && copy the planning polygon ID number of the current record to
                                    the "go to" field
    show gets && refresh the contents of the main Whiffer screen
    _CUROBJ=OBJNUM(M.go_to) && move the Whiffer screen's cursor to the "Go to" button
    return && return control to the main Whiffer screen program
procedure go && moves to the user-specified record and displays its contents on the
                                    main Whiffer screen
    seek m.go_to && seek a record in the plan data file whose sort key matches the contents
    of the "m.go_to" memvar,
    * && and move the record pointer to it
    if eof() && if record pointer ends up at the end-of-file indicator,
        go bottom && reposition it on the last record
    endif
```

```
    =showgets() && call the "showgets" procedure to refresh the contents of the main
    Whiffer screen
    return && return control to the main Whiffer screen program
procedure sign_out && quits execution of the main Whiffer screen program when the user
    clicks the "Quit" button,
    && or selects the "Quit" option on the File menu
    && stop the program and close all of its windows
    && return control to the computer's operating system
    && moves the user through records according to which of four navigation
        buttons is clicked on the main Whiffer screen
    do case && determine which button has been clicked and act accordingly
    case M.CHOICE = 1 && "first" button
        goto m.toprec && move the record pointer to the record whose number was
        previously stored in "m.toprec"
    case M.CHOICE = 2 && "prev." button
        skip -1
    case M.CHOICE = 3
        skip 1
    case M.CHOICE = 4
        goto m.botrec
    endcase
    =showgets()
    return
procedure setnavbutn
    do case
    && enables and disables navigation buttons on the main Whiffer
    screen
    && determine the current position of the record pointer in the
    currently-displayed plan file
    case recno()<>m.toprec and recno()<>m.botrec && currently-displayed record is not the
                                    first or last polygon record
        show get m.choice enable
                            && enable all of the navigation buttons
    case recno() = m.botrec
        show get M.CHOICE, }1\mathrm{ enable
        show get M.CHOICE, 2 enable
        show get M.CHOICE, }3\mathrm{ disable
        show get M.CHOICE, }4\mathrm{ disable
            && disable the "next" button
            && disable the "last" button
case recno() = m.toprec && currently-displayed record is the first polygon record
    show get M.CHOICE, 1 disable && disable the "first" button
    show get M.CHOICE, 2 disable && disable the "prev." butto
    show get M.CHOICE, }3\mathrm{ enable
    && enable the "next" button
```

show get M.CHOICE, 4 enable
\&\& enable the "last" button
endcase
return \&\& return control to the calling procedure
procedure prt_rept
parameters rept
if $\mathbf{m} . g o=$ 'Preview'
\&\& general-purpose procedure to print reports
\&\& calling procedure passes the name of the report to be printed $\& \&$ user has selected the "preview" option on the calling procedure's prompt screen

m.rept='report form '+m.rept+' preview' \&\& assemble a text string for macro

 substitution below* \&\& give the user an option to print the report after closing the preview window
* $\quad \& \&$ store user's response in memvar "m.prt_it"
wait window "Do you want to print the previewed report? (Y/N)" to m.prt_it
if upper(m.prt_it)='Y' \&\& the user wants to print after previewing
m.rept=strtran(m.rept,' preview')+' noconsole to printer prompt'
\&\& assemble a different text string
\&rept \&\& execute the text string as a command
endif $\quad \& \&$ if the user doesn't want to print, simply fall through to the "return" command without doing anything
else $\quad \& \&$ user has selected the "print" option on the calling procedure's prompt screen m.rept='report form '+m.rept+' noconsole to printer prompt' \&\& assemble a text string for macro substitution below
\&rept
\&\& execute the text string as a command
endif
return
\&\& return control to the calling procedure
procedure setup $\quad \& \&$ establishes the default data file environment for the Whiffer screen
=get_schl() $\& \&$ call the "get_schl" procedure to open the current CIP's data file $\& \&$ select an new work area
SELECT 0
* \&\& the current projection file's file name should be stored in m.prjfile, so try to open it
* $\quad \& \&$ if it can't be found, prompt the user to identify it by browsing files in the current directory
* \&\& once it is opened, give it the generic alias "prj"
uSE (LOCFILE(m.prjfile+".dbf","DBF","Where is the projections file?")) ALIAS prj exclusive
index on plan_id tag plan_id additive $\quad \& \&$ sort the file by planning polygon ID number * relate the projections file to each of the one-school-level versions of the CIP file set relation to alltrim(hs_home) into his,alltrim(ms_home) into mis, alltrim(es_home) into els

SELECT 0
=get_plan()
return
\&\& open a new work area
$\& \&$ call the "get_plan" procedure to open the current plan's data file $\& \&$ return control to the calling procedure
procedure get_schl \&\& opens the currently-selected CIP data file under several aliases

* $\quad \& \&$ close all instances of the current CIP data file that might be in existence

if used('schools') select schools use	s \&\& if there is currently a data file called "schools" in use, close it
endif	
if used('his') select his use	\&\& if there is currently a data file called "his" in use, close it
endif	
if used('mis') select mis use	\&\& if there is currently a data file called "mis" in use, close it
endif	
if used('els') select els use	\&\& if there is currently a data file called "els" in use, close it
endif	
* \&\& the currently-selected CIP's file name should be sto	
e found, prompt the user to iden	
\&\& once it	opened, give it the generic alias "schools"
USE (LOCFILE(m.cur_cip,"DBF","Select which CIP to use:")) exclusive ALIAS schools	
restore from cip.mem additive $\quad \& \&$ try to get the CIP name from the settings file	
wait window "No CIP selected - using previous CIP" nowait \&\& tell the user what has happened	
USE (cur_cip) exclusive ALIAS schools \&\& use the CIP file named in the settings file
endif	
* \&\& recreate th	the important CIP sort sequences
INDEX ON schl_name FOR " HS"\$schl_name TAG Hs_only ADDITIVE	
INDEX ON schl_name FOR " MS"\$schl_name TAG Ms_only ADDITIVE	
INDEX ON schl_name FOR " ES"\$schl_name TAG Es_only ADDITIVE	
INDEX ON number TAG Number ADDITIVE	
INDEX ON level+schl_name TAG Level ADDITIVE	
INDEX ON schl_name TAG Name ADDITIVE	
$\mathbf{m . c u r} \mathbf{c i p}=\mathbf{d b f}() \quad \& \&$ store the name of the currently-selected CIP file in a memvar	
save to cip.mem all like cur_cip $\quad \& \&$ save the current CIP's name for next start up of	
use $\quad \& \&$ close the CIP and re-open it in shared use	
select $0 \quad \& \&$ open a new work area	
USE (cur_cip) ALIAS his ORDER TAG "hs_only" $\quad \begin{aligned} & \text { \&\& open the CIP data file as "his } \\ & \text { filtered to show HS data only }\end{aligned}$	
SELECT $0 \quad \& \&$ open a new work area	
USE (cur_cip) again ALIAS mis ORDER TAG "ms_only" \&\& open the CIP data file as	
	"mis", filtered to show MS data only
SELECT 0	\&\& open a new work area

USE (cur_cip) again ALIAS els ORDER TAG "es_only" \&\& open the CIP data file as "els", filtered to show ES data only
SELECT $0 \quad \& \&$ open a new work area
USE (cur_cip) again ALIAS schools ORDER TAG "name"
\&\& open the CIP data file as "schools", with no filtering m.last_slash=rat("\",dbf()) \&\& store the position of the last "backslash" character in the current CIP's file name
*\&\& store the text string from the left of the last backslash to the end of the CIP's file name m.cip_in_use=substr(dbf(),m.last_slash+1)

* $\quad \& \&$ remove the "period" and file extension from the CIP name
m.cip_in_use=left(m.cip_in_use,at(".",m.cip_in_use)-1)
return $\quad \& \&$ return control to the calling procedure
procedure get_plan $\& \&$ open the currently-selected plan data file
* $\quad \& \&$ the currently-selected plan's file name should be stored in m.cur_db, so try to open it
* $\quad \& \&$ if it can't be found, prompt the user to identify it by browsing files in the current directory
* \&\& once it is opened, give it the generic alias "assignmt"

USE (LOCFILE(m.cur_db,"DBF","Select a plan to work on:")) exclusive ALIAS assignmt index on plan_id tag plan_id additive $\quad \& \&$ recreate the planning polygon ID number index set relation to plan_id into prj
$\& \&$ relate the plan data file to the projection data file by planning polygon ID number
m.cur_db=dbf()
save to db.mem all like cur_db
$\& \&$ store the file name of the current plan in a memvar
\&\& save the current plan's name for next start up of Whiffer
goto bottom $\quad \& \&$ move to the record with the highest planning polygon ID number
m.botrec=recno() $\& \&$ store its record number in a memvar for nav button use goto top $\quad \& \&$ move to the record with the lowest planning polygon ID number M.TOPREC=recno() $\& \&$ store its record number in a memvar for nav button use m.last_slash=rat("\",dbf()) \&\& store the position of the last backslash in the plan file name m.pln_in_use=substr(dbf(),m.last_slash+1) \&\& extract just the plan name plus file extension from the full name
m.pln_in_use=left(m.pln_in_use,at(".",m.pln_in_use)-1) \&\& remove the file extension and save plan name in memvar
return \&\& return control to the calling procedure
procedure swit_cip \&\& changes the active CIP file after the user clicks on the "Switch CIPs" button
m.cur_cip='a.dbf' $\quad \& \&$ load a dummy value to force the user file selection prompt to appear
$\& \&$ call the "get_schl" procedure to allow the user to select a different
CIP data file
\&\& switch to the current plan's data file
select assignmt
=showgets()
return
\&\& call the "showgets" procedure to refresh the contents of the main Whiffer screen
\&\& return control to the calling procedure
procedure swit_pln \&\& changes the active plan file after the user clicks on the "Switch Plans" button
select assignmt
use
m.cur_db='a.dbf'
=get_plan()
=showgets() \&\& call the "showgets" procedure to refresh the contents of the main Whiffer screen

* \&\& call the "get_stat" procedure to refresh the contents of the scrolling schools list at the bottom of the Whiffer screen
=get_stat(m.cur_lev)
return
procedure colorset
private m.oldselect
m.oldselect=select()
if not used("colorrsc")
use colorrsc again alias colorrsc in $0 \quad \& \&$ open it
endif
select colorrsc \&\& switch to the colorrsc data file
locate for upper(name)='MICROSSIS' \&\& find the record containing the "microssis" color scheme
private m.xx,m.yy,m.zz $\& \&$ establish three additional local memvars
for $\mathbf{m . x x}=1$ to 12 \&\& cycle through 12 iterations of this loop
* get the contents of this color scheme's memo fld
m.zz=eval("colorrsc.scheme"+alltrim(str(m.xx)))
* find the beginning of the 6th set of RGB values m.yy=ATC("R",m.zz,6)
* set up the color scheme in two sections, to avoid "String too long" error
set color of scheme m.xx to (substr(m.zz,1,m.yy-1))
set color of scheme m.xx to (",,,","+substr(m.zz,m.yy))
endfor $\quad \& \&$ repeat above for all 12 color settings
select colorrsc $\quad \& \&$ make sure colorrsc file is active
use $\quad \& \&$ close it
select (oldselect) $\quad \& \&$ make original data file the active one
return $\quad \& \&$ return control to the main Whiffer screen's set up program
procedure esc_proc \&\& lets user use Esc key to close pop-ups
* \&\& Escape key is normally disabled to keep user from terminating program accidentally
if wvisible('List') $\quad \& \&$ if there is a visible window named "list" (all pop-up lists are opened in a window called "List")
keyboard '\{ctrl+w\}' \&\& simulate the action of the Ctrl-W key combination (this key combo closes the active window)
endif
return
\&\& return control to the calling procedure

has options
@5,(wcols()-len(line3))/2 say line3 font 'geneva',10 \&\& display message line 3 @7,30 get m.wait picture "@*T3H \!Hold;Discard" size 1.5,9,2
font 'geneva',10 style '@B' \&\& display the button
read $\quad \& \&$ get the user's choice from the button that is clicked
otherwise
wait window $\quad \& \&$ pause execution until user clicks mouse or presses a key
endcase
release window err_win return
\&\& close the error message window $\& \&$ return control to the calling procedure

Polyback screen activate code: This code executes whenever the main Whiffer screen is made the topmost window on the computer dislay, either by program or user action:

if used('assignmt') \&\& if there is a data file in use named "assignmt"
 select assignmt $\quad \& \&$ make it the active work area endif

Expfprpt screen cleanup code: This code executes whenever the user clicks on the "Select type of file to export:" prompt at the top of the Export Feed \% file prompt screen:


```
    m.g8=.f.
    m.g9=.t. \(\quad \& \&\) turn on HS grade levels
    m.g10=.t.
    m.g11=.t.
    m.g12=.t.
endif
for \(\mathbf{n = 0}\) to \(12 \quad \& \&\) cycle through grade level checkboxes
    m.gfld='m.g'+alltrim(str(n)) \&\& set up for macro substitution on next line
    show get \&gfld \(\quad \& \&\) refresh display of field on prompt screen
endfor
return \&\& return control to prompt screen program
```

Oldfdr screen cleanup code: This code executes whenever the user clicks on the "Select report to create:" prompt at the top of the Report Options prompt screen:
procedure setboxes $\quad \& \&$ sets check boxes appropriate to report user requested
do case
case m.choi=1 or m.choi=2 \&\& \% of Elem to each Middle or \% of Elem to each High
m.g0=.t. $\& \&$ turn on ES grade levels
m.g1=.t.
m.g2=.t.
m.g3=.t.
m.g4=.t.
m.g5=.t.
m.g6=.f. $\quad \& \&$ turn off MS grade levels
m.g7=.f.
m.g8=.f.
m.g9=.f. \&\& turn off HS grade levels
m.g10=.f.
m.g11=.f.
m.g12=.f.
case m.choi=3 or m.choi=4 \&\& \% of Middle to each High or \% of Middle from each Elem
m.g0=.f. \&\& turn off ES grade levels
m.g1=.f.
m.g2=.f.
m.g3=.f.
m.g4=.f.
m.g5=.f.
m.g6=.t. $\quad \& \&$ turn on MS grade levels
m.g7=.t.
m.g8=.t.
m.g9=.f. \&\& turn off HS grade levels
m.g10=.f.
m.g11=.f.
m.g12=.f.

```
otherwise \&\& \% of Middle to each High or \% of Middle from each Elem
    m.g0=.f. \(\quad \& \&\) turn off ES grade levels
    m.g1=.f.
    m.g2=.f.
    m.g3=.f.
    m.g4=.f.
    m.g5=.f.
    m.g6=.f. \(\quad \& \&\) turn off MS grade levels
    m.g7=.f.
    m.g8=.f.
    m.g9=.t. \(\quad \& \&\) turn on HS grade levels
    m.g10=.t.
    m.g11=.t.
    m.g12=.t.
endcase
for \(\mathbf{n = 0}\) to \(12 \quad \& \&\) cycle through grade level checkboxes
    m.gfld='m.g'+alltrim(str(n)) \(\quad \& \&\) set up for macro substitution on next line
    show get \&gfld \(\quad \& \&\) refresh display of field on prompt screen
endfor
        return
        \&\& return control to prompt screen program
```

Appendix A: Examples of Whiffer Reports

Atholton HS

Centennial HS

Hammond HS

Howard HS

Long Reach HS

Marriotts Ridge HS

Mt Hebron HS

Atholton ES

Plan Poly	FARM Read/Math Curr			Proposed Housing Units SFD SFA APT			$\begin{gathered} 2009 \\ \text { ES } \\ \text { POp } \\ \hline \end{gathered}$
13	<5\%	91\%/91\%	26	0	0	0	26
14	6\% (2)	86\%/79\%	33	0	0	0	33
16	<5\%	>95\%/>95\%	15	0	0	0	16
17	42\%(19)	82\%/82\%	45	0	0	0	45
56	8\%(5)	82\%/88\%	63	0	0	0	62
57	6\%(2)	94\%/100\%	32	0	0	0	32
1013	*	*	1	0	0	0	1
1014	9\%(2)	>95\%/75\%	23	0	0	0	23
1016	20\%(2)	>95\%/>95\%	10	0	0	0	10
1017	25\%(9)	86\%/>95\%	36	0	0	0	35
1056	7\%(2)	89\%/89\%	27	0	\bigcirc	0	27
1057	<5\%	94\%/94\%	56	0	0	0	56
Tot.	12\%(45)	90\%/90\%	367	0	0	0	366

$\begin{array}{\|c\|} \text { Pro } \\ \text { Housil } \\ \text { SFD } \end{array}$	OS		$\begin{gathered} 2010 \\ \text { ESS } \\ \text { Pop } \end{gathered}$
0	0	0	27
5	0	0	36
0	0	0	16
0	0	0	46
0	0	0	67
0	0	0	34
0	0	0	1
2	0	0	25
0	0	0	11
0	0	0	37
0	0	0	27
0	0	0	58
7	0	0	385

$\mathbf{| c | r r r r r}$

 Proposed 2014 SFD SFA AP $\begin{array}{r}2014 \\ \text { ES } \\ \text { Pop } \\ \hline 27 \\ 36 \\ 16 \\ \hline 45 \\ 72 \\ 38 \\ \hline 1 \\ 26 \\ 11 \\ \hline 37 \\ 28 \\ 57 \\ \hline 394\end{array}$

Bellows Spring ES

$\begin{aligned} & \text { Plan } \\ & \text { Poly } \\ & \text { ID \# } \end{aligned}$			
33	50\%(7)	>95\%/>95\%	14
35	*	*	8
76	13\%(7)	>95\%/80\%	56
77	7\%(2)	88\%/88\%	30
82	12\%(5)	>95\%/88\%	43
269	$<5 \%$	>95\%/>95\%	13
298	<5\%	89\%/89\%	97
1033	21\%(12)	88\%/81\%	56
1035	<5\%	>95\%/67\%	18
1076	30\%(3)	>95\%/>95\%	10
1077	21\%(7)	88\%/63\%	34
1082	13\%(7)	85\%/85\%	52
1269	*	*	3
1298	5\%(3)	>95\%/93\%	57
2035	7\%(1)	>95\%/>95\%	14
2077	6\%(5)	92\%/88\%	82

Tot. 11\%(67) 93\%/86\%

Proposed
Housing Units

2009 SFD SFA APT | 2009 |
| ---: |
| ES |
| POp |
| 15 |
| 8 |
| 57 |
| 31 |
| 45 |
| 13 |
| 99 |
| 57 |
| 19 |
| 24 |
| 35 |
| 54 |
| 3 |
| 59 |
| 15 |
| 84 |
| 618 |

Proposed
Housing Units SFD SFA APT ES

	Proposed Housing Units SFD SFA APT			$\begin{gathered} 2011 \\ \text { ES } \\ \text { Pop } \end{gathered}$
	0	50	60	57
	0	30	100	50
	0	0	0	56
	0	0	0	31
	0	0	0	44
	0	0	0	13
	0	0	0	99
	0	0	0	56
	0	0	0	19
	0	45	40	54
	0	0	0	34
	0	0	0	53
	0	0	0	4
	0	0	0	58
	0	0	\bigcirc	15
	0	0	0	83
	0	125	200	726

Proposed Housing Units SFD SFA APT			$\begin{gathered} 2012 \\ \text { ES } \\ \text { Pop } \\ \hline \end{gathered}$
0	- 50	60	77
0	- 30	100	72
\bigcirc	0	0	56
0	0	0	31
0	0	0	43
0	0	0	13
0	0	0	96
\bigcirc	0	0	57
0	0	0	19
0	058	0	67
0	0	0	34
0	0	0	53
0	0	0	4
0	0	\bigcirc	58
0	0	0	15
0	0	0	84
	138	160	779

Proposed Housing Units SFD SFA APT			$\begin{gathered} 2014 \\ \text { ES } \\ \text { Pop } \end{gathered}$
4	42	60	107
0	30	100	109
\bigcirc	0	\bigcirc	53
0	0	0	29
\bigcirc	0	\bigcirc	42
0	0	0	12
0	0	0	95
0	0	0	58
\bigcirc	0	0	18
0	60	0	83
0	0	0	32
0	0	\bigcirc	50
0	0	0	4
\bigcirc	0	0	55
1	0	\bigcirc	14
0	0	0	80
5	132	160	841

Bollman Bridge ES

$\begin{aligned} & \text { Plan } \\ & \text { Poly } \\ & \text { ID } \end{aligned}$	$\begin{array}{r} \text { FARM } \\ \% \quad(\#) \\ \hline \end{array}$	passir		Proposed Housing Units SFD SFA APT			$\begin{gathered} 2009 \\ \text { ES } \\ \text { Pop } \\ \hline \end{gathered}$	Proposed Housing Units SFD SFA APT			$\begin{gathered} 2010 \\ \text { ES } \\ \text { Pop } \\ \hline \end{gathered}$	Proposed Housing Units SFD SFA APT			$\begin{gathered} 2011 \\ \text { ES } \\ \text { Pop } \\ \hline \end{gathered}$	Proposed Housing Units SFD SFA APT			$\begin{gathered} 2012 \\ \text { ES } \\ \text { Pop } \\ \hline \end{gathered}$	Proposed Housing Units SFD SFA APT			$\begin{gathered} 2013 \\ \text { ES } \\ \text { Pop } \\ \hline \end{gathered}$	Proposed Housing Units SFD SFA APT			$\begin{gathered} 2014 \\ \text { ES } \\ \text { Pop } \\ \hline \end{gathered}$
20	<5\%	95\%/90\%	66	0	0	0	64	0	0	0	65	0	0	0	63	0	0	0	67	0	0	0	64	0	0	0	64
21	6\%(2)	92\%/92\%	35	0	0	0	35	0	0	0	35	0	0	0	34	0	0	0	35	0	0	0	35	0	0	0	35
22	8\%(1)	86\%/86\%	13	0	0	0	13	0	0	0	13	0	0	0	13	0	0	0	13	0	0	0	13	0	0	0	13
23	26\%(16)	72\%/72\%	61	0	0	0	60	0	0	0	60	0	0	0	60	0	0	0	60	0	0	0	61	0	0	0	61
24	30\% (21)	59\%/67\%	71	0	0	0	69	0	0	0	71	0	0	0	69	0	0	0	69	0	0	0	70	1	0	0	72
25	23\%(3)	60\%/80\%	13	0	0	0	14	0	0	0	14	0	\bigcirc	0	14	\bigcirc	0	0	14	0	0	0	14	0	\bigcirc	0	14
27	25\%(4)	50\%/50\%	16	9	0	0	20	1	0	0	20	5	0	0	21	12	0	0	26	0	0	0	26	2	0	0	27

Kindergarten Included

Atholton ES

Plan
$\frac{\text { Tot }}{\text { To }}$

Bellows Spring ES Plan Poly
Tot.

Bollman Bridge ES
Plan
Poly
Tot.

Bryant Woods ES
Plan
ID \#
Tot.

Bushy Park ES
Plan
Poly
ID
Tot.

Centennial Lane ES
Plan
ID \#
Tot.

Clarksville ES

Plan
Poly
Tot.

Clemens Crossing ES

Tot.

$\begin{gathered} \text { Curr. } \\ \text { ES } \\ \text { Pop } \\ \hline \end{gathered}$	Proposed Housing Units SFD SFA APT	$\begin{gathered} 2009 \\ \text { ES } \\ \text { Pop } \\ \hline \end{gathered}$	Proposed Housing Units SFD SFA APT	$\begin{gathered} 2010 \\ \text { ES } \\ \text { Pop } \\ \hline \end{gathered}$	Proposed Housing Units SFD SFA APT	$\begin{gathered} 2011 \\ \text { ES } \\ \text { Pop } \\ \hline \end{gathered}$	Proposed Housing Units SFD SFA APT	$\begin{gathered} 2012 \\ \text { ES } \\ \text { Pop } \\ \hline \end{gathered}$	Proposed Housing Units SFD SFA APT	$\begin{gathered} 2013 \\ \text { ES } \\ \text { Pop } \\ \hline \end{gathered}$	Proposed Housing Units SFD SFA APT	$\begin{gathered} 2014 \\ \text { ES } \\ \text { Pop } \\ \hline \end{gathered}$
587	$0 \quad 50$	618	12121234	667	0125200	726	0138160	779	0110193	800	5132160	841

$\begin{gathered} \text { Curr } \\ \text { ES } \\ \text { POp } \\ \hline \end{gathered}$	Proposed Housing Units SFD SFA APT	$\begin{gathered} 2009 \\ \text { ES } \\ \text { POp } \\ \hline \end{gathered}$	Proposed Housing Units SFD SFA APT	$\begin{gathered} 2010 \\ \text { ES } \\ \text { Pop } \\ \hline \end{gathered}$	Proposed Housing Units SFD SFA APT	$\begin{gathered} 2011 \\ \text { ES } \\ \text { Pop } \\ \hline \end{gathered}$	Proposed Housing Units SFD SFA APT	$\begin{gathered} 2012 \\ \text { ES } \\ \text { Pop } \\ \hline \end{gathered}$	Proposed Housing Units SFD SFA APT	$\begin{gathered} 2013 \\ \text { ES } \\ \text { Pop } \\ \hline \end{gathered}$	Proposed Housing Units SFD SFA APT	$\begin{gathered} 2014 \\ \text { ES } \\ \text { Pop } \\ \hline \end{gathered}$
38	$0 \quad 0$	393	000	397	$0 \quad 0$	397	00	401	00	397	0	

$\begin{gathered} \text { Curr. } \\ \text { ES } \\ \text { Pop } \\ \hline \end{gathered}$	Proposed Housing Units SFD SFA APT	$\begin{gathered} 2009 \\ \text { ES } \\ \text { Pop } \\ \hline \end{gathered}$	Proposed Housing Units SFD SFA APT	$\begin{gathered} 2010 \\ \text { ES } \\ \text { Pop } \\ \hline \end{gathered}$	Proposed Housing Units SFD SFA APT	$\begin{gathered} 2011 \\ \text { ES } \\ \text { Pop } \\ \hline \end{gathered}$	Proposed Housing Units SFD SFA APT	$\begin{gathered} 2012 \\ E S \\ \text { Pop } \\ \hline \end{gathered}$	Proposed Housing Units SFD SFA APT	$\begin{gathered} 2013 \\ \text { ES } \\ \text { Pop } \\ \hline \end{gathered}$	Proposed Housing Units SFD SFA APT	$\begin{gathered} 2014 \\ \text { ES } \\ \text { Pop } \\ \hline \end{gathered}$
659	3200	609	2800	599	220	580	310	569	530	561	3200	

$\begin{gathered} \text { Curr. } \\ \text { ES } \\ \text { Pop } \\ \hline \end{gathered}$	Proposed SFD SFA APT	$\begin{gathered} 2009 \\ \text { ES } \\ \text { Pop } \\ \hline \end{gathered}$	Proposed Housing Units SFD SFA APT	$\begin{gathered} 2010 \\ \text { ES } \\ \text { Pop } \\ \hline \end{gathered}$	Proposed SFD SFA APT	$\begin{gathered} 2011 \\ \text { ES } \\ \text { Pop } \\ \hline \end{gathered}$	Proposed SFD SFA APT	$\begin{gathered} 2012 \\ \text { ES } \\ \text { Pop } \\ \hline \end{gathered}$	Proposed SFD SFA APT	$\begin{gathered} 2013 \\ \text { ES } \\ \text { Pop } \\ \hline \end{gathered}$	Proposed SFD SFA APT	$\begin{gathered} 2014 \\ \text { ES } \\ \text { Pop } \\ \hline \end{gathered}$
617	10	627	4	638	0	648	0 O 0	3	0 - 0	6	10	

$\begin{gathered} \text { Curr. } \\ \text { ES } \\ \text { Pop } \\ \hline \end{gathered}$	Proposed Housing Units SFD SFA APT	$\begin{gathered} 2009 \\ \text { ES } \\ \text { Pop } \\ \hline \end{gathered}$	Proposed Housing Units SFD SFA APT	$\begin{gathered} 2010 \\ \text { ES } \\ \text { Pop } \\ \hline \end{gathered}$	Proposed Housing Units SFD SFA APT	$\begin{gathered} 2011 \\ \text { ES } \\ \text { Pop } \\ \hline \end{gathered}$	Proposed Housing Units SFD SFA APT	$\begin{gathered} 2012 \\ \text { ES } \\ \text { Pop } \\ \hline \end{gathered}$	Proposed Housing Units SFD SFA APT	$\begin{gathered} 2013 \\ \text { ES } \\ \text { Pop } \\ \hline \end{gathered}$	Proposed Housing Units SFD SFA APT	$\begin{gathered} 2014 \\ \text { ES } \\ \text { Pop } \\ \hline \end{gathered}$
781	00	729	2100	664	$0 \quad 0$	624	22	585	13	553	11	

$\begin{gathered} \text { Curr } \\ \text { ES } \\ \text { Pop } \\ \hline \end{gathered}$	Proposed Housing Units SFD SFA APT	$\begin{gathered} 2009 \\ \text { ES } \\ \text { POp } \\ \hline \end{gathered}$	Proposed Housing Units SFD SFA APT	$\begin{gathered} 2010 \\ \text { ES } \\ \text { Pop } \\ \hline \end{gathered}$	Proposed Housing Units SFD SFA APT	$\begin{gathered} 2011 \\ \text { ES } \\ \text { Pop } \\ \hline \end{gathered}$	Proposed Housing Units SFD SFA APT	$\begin{gathered} 2012 \\ \text { ES } \\ \text { Pop } \\ \hline \end{gathered}$	Proposed Housing Units SFD SFA APT	$\begin{gathered} 2013 \\ \text { ES } \\ \text { Pop } \\ \hline \end{gathered}$	Proposed Housing Units SFD SFA APT	$\begin{gathered} 2014 \\ \text { ES } \\ \text { Pop } \\ \hline \end{gathered}$
397	0	453	300	468	00	473	31	491	- ${ }_{1}$	506	- ${ }^{\text {c }}$	

$\begin{aligned} & \text { Plan } \\ & \text { Poly } \\ & \text { ID \# } \end{aligned}$	$\begin{gathered} \text { Curr } \\ \text { MS } \\ \text { POp } \\ \hline \end{gathered}$	Proposed Housing Units SFD SFA APT			$\begin{gathered} 2009 \\ \text { MS } \\ \text { Pop } \\ \hline \end{gathered}$	Proposed Housing Units SFD SFA APT			$\begin{gathered} 2010 \\ \text { MS } \\ \text { Pop } \\ \hline \end{gathered}$	Proposed Housing Units SFD SFA APT			$\begin{gathered} 2011 \\ \text { MS } \\ \text { Pop } \end{gathered}$	Proposed Housing Units SFD SFA APT			$\begin{gathered} 2012 \\ \text { MS } \\ \text { Pop } \\ \hline \end{gathered}$	Proposed Housing Units SFD SFA APT			$\begin{gathered} 2013 \\ \text { MS } \\ \text { POp } \\ \hline \end{gathered}$				$\begin{gathered} 2014 \\ \text { MS } \\ \text { Pop } \\ \hline \end{gathered}$
68	49	0	0	0	43	0	0	0	42	0	0	0	42	0	0	0	41	0	0	0	42	0	0	0	42
69	26	0	0	0	27	0	0	0	27	0	0	0	27	0	0	0	27	0	0	0	28	0	0	0	28
76	27	0	0	0	28	0	\bigcirc	0	27	0	0	0	28	0	0	0	27	0	0	0	28	0	0	0	27
83	9	0	0	0	8	0	0	0	8	0	0	0	8	0	0	0	8	0	0	0	8	0	0	0	8
84	22	2	0	0	15	1	0	0	14	0	0	0	14	0	0	0	13	0	0	0	14	6	0	0	13
85	47	0	0	0	47	0	0	0	45	0	0	0	44	0	0	0	42	0	0	0	43	0	0	0	41
86	33	0	0	0	22	0	0	0	21	0	0	0	21	0	0	0	20	0	0	0	20	0	0	0	20
88	17	19	0	0	28	7	0	0	29	1	0	0	31	1	0	0	30	0	0	0	31	1	0	0	31
89	21	0	0	0	25	0	0	0	25	0	0	0	25	1	0	0	24	0	0	0	24	0	0	0	23
90	4	0	0	0	7	0	0	0	7	0	0	0	7	0	0	0	7	0	0	0	7	0	0	0	6
91	8	13	0	0	12	2	0	0	13	0	0	0	14	0	0	0	14	14	0	0	15	0	0	0	16
95	29	0	0	0	32	0	0	0	31	0	0	0	31	0	0	0	30	0	0	0	30	0	0	0	29
261	8	0	0	0	14	0	0	0	14	0	0	0	15	0	0	0	14	0	0	0	15	0	0	0	15
264	5	0	0	0	3	0	0	0	3	0	0	0	3	0	0	0	3	0	0	0	3	0	0	0	3
301	5	0	0	0	7	0	0	0	7	0	0	0	7	0	0	0	7	0	0	0	7	0	0	0	7
1068	41	0	0	0	49	0	0	0	48	0	0	0	49	0	0	0	49	0	0	0	51	0	0	0	50
1069	34	0	0	0	46	0	0	0	47	0	0	0	48	0	0	0	47	0	0	0	49	0	0	0	49
1076	1	0	50	0	5	0	41	44	8	0	45	40	12	0	58	0	15	0	40	0	18	0	60	0	21
1083	13	0	0	0	24	0	0	0	24	0	0	0	25	0	0	0	25	0	0	0	26	3	0	0	26
1084	2	0	0	0	7	0	0	0	7	0	0	0	7	0	0	0	7	0	0	0	7	0	0	0	7
1085	42	0	0	0	32	0	\bigcirc	0	30	0	0	0	29	0	0	0	28	0	0	0	28	0	0	0	27
1086	25	0	0	0	16	0	0	0	15	0	0	0	15	0	0	0	14	0	0	0	14	0	0	0	14
1088	28	0	0	0	23	0	0	0	22	0	0	0	21	20	0	0	20	0	0	0	21	20	0	0	20
1089	11	0	0	0	11	0	0	0	10	0	0	0	10	1	0	0	10	0	0	0	10	50	0	0	10
1090	14	0	0	0	8	0	0	0	7	0	0	0	7	0	0	0	6	0	0	0	6	0	0	0	6
1091	2	0	0	0	2	0	0	0	2	0	0	0	2	0	0	0	2	3	0	0	2	16	0	0	2
1095	31	0	0	\bigcirc	24	0	\bigcirc	0	22	0	0	0	22	0	0	0	20	0	\bigcirc	0	20	0	0	0	20
1261	3	0	0	0	3	0	0	0	3	0	0	0	3	0	0	0	2	0	0	0	3	0	0	0	3
1264	11	0	0	0	9	0	0	0	9	0	0	0	9	0	0	0	8	0	\bigcirc	0	9	0	0	0	8
1301	19	0	0	0	18	0	0	0	17	0	0	0	17	0	0	0	16	0	0	0	16	0	0	0	16
2068	19	0	0	0	17	0	0	0	17	0	0	0	17	0	0	0	17	0	0	0	17	0	0	0	17
2089	3	0	0	0	6	0	0	0	6	0	0	0	6	0	0	0	6	0	0	0	6	0	0	0	6
2091	35	0	0	0	54	0	0	0	54	0	0	0	56	0	0	0	56	0	0	0	58	0	0	0	58
2095	31	0	0	0	27	0	0	0	26	0	0	0	26	0	0	0	24	0	0	0	24	0	0	0	23
3091	3	0	0	0	2	0	0	0	2	0	0	0	2	0	0	0	2	0	0	0	2	1	0	0	2
Tot.	678	34	50	0	701	10	41	44	689	1	45	40	700	23	58	0	681	17	40	0	702	97	60	0	694

Burleigh Manor MS

Pro Housir SFD	U		$\begin{gathered} 2011 \\ \text { MS } \\ \text { Pop } \end{gathered}$	Proposed Housing Units SFD SFA APT			$\begin{gathered} 2012 \\ \text { MS } \\ \text { Pop } \end{gathered}$	Pro Housin SFD	US		$\begin{gathered} 2013 \\ \text { MS } \\ \text { Pop } \\ \hline \end{gathered}$
\bigcirc	\bigcirc	\bigcirc	34	0	0	0	36	0	\bigcirc	\bigcirc	37
\bigcirc	\bigcirc	\bigcirc	0	0	0	0	0	0	\bigcirc	0	0
0	0	0	12	0	0	0	12	0	0	0	13
0	0	0	21	0	0	0	22	0	0	0	23
\bigcirc	\bigcirc	\bigcirc	15	0	0	0	15	0	0	0	16
\bigcirc	\bigcirc	0	31	1	0	0	31	0	\bigcirc	0	32
1	0	0	19	0	0	0	20	0	0	0	20

$$
\begin{array}{rrrr}
\begin{array}{c}
\text { Proposed } \\
\text { Housing Units } \\
\text { SFD }
\end{array} & \begin{array}{c}
\mathbf{2 0 1 4} \\
\text { SFA APT }
\end{array} \\
\cline { 1 - 5 } & \begin{array}{c}
\text { MPD }
\end{array} \\
\cline { 5 - 5 } & 0 & 0 & \mathbf{4 0} \\
0 & 0 & 0 & \mathbf{0} \\
1 & 0 & 0 & \mathbf{1 4} \\
\hline 0 & 0 & 0 & \mathbf{2 4} \\
0 & 0 & 0 & \mathbf{1 7} \\
0 & 0 & 0 & \mathbf{3 4} \\
\hline 0 & 0 & 0 & \mathbf{2 1}
\end{array}
$$

Atholton ES	Hammond HS	277	75.4\%
	Oakland Mills HS	90	24.5\%
		367	100\%
Bellows Spring ES	Long Reach HS	509	86.7\%
	Oakland Mills HS	78	13.2\%
		587	100\%
Bollman Bridge ES	Hammond HS	556	100.0\%
		556	100\%
Bryant Woods ES	Atholton HS	177	45.5\%
	Wilde Lake HS	212	54.5\%
		389	100\%
Bushy Park ES	Glenelg HS	659	100.0\%
		659	100\%
Centennial Lane ES	Centennial HS	617	100.0\%
		617	100\%
Clarksville ES	Atholton HS	230	29.4\%
	River Hill HS	551	70.5\%
		781	100\%
Clemens Crossing ES	Atholton HS	295	74.3\%
	Wilde Lake HS	102	25.6\%
		397	100\%
Cradlerock ES	Oakland Mills HS	453	100.0\%
		453	100\%
Dayton Oaks ES	Atholton HS	70	8.7\%
	Glenelg HS	111	13.8\%
	River Hill HS	618	77.3\%
		799	100\%
Deep Run ES	Hammond HS	112	21.6\%
	Long Reach HS	405	78.3\%
		517	100\%
Elkridge ES	Howard HS	405	58.8\%
	Long Reach HS	283	41.1\%
		688	100\%
Forest Ridge ES	Hammond HS	347	58.9\%
	Reservoir HS	242	41. 0\%
		589	100\%
Fulton ES	Atholton HS	3	0.6\%
	Reservoir HS	436	94.7\%
	River Hill HS	21	4.5\%
		460	100\%
Gorman Crossing ES	Atholton HS	230	43.3\%
	Reservoir HS	301	56.6\%
		531	100\%
Guilford ES	Hammond HS	344	87.0\%
	Oakland Mills HS	51	12.9\%
		395	100\%
Hammond ES	Atholton HS	233	51.7\%
	Hammond HS	129	28.6\%
	Reservoir HS	88	19.5\%

Atholton ES	Hammond MS	196	53.4\%
	Oakland Mills MS	90	24.5\%
	Patuxent Valley MS	81	22.0\%
		367	100\%
Bellows Spring ES	Bonnie Branch MS	66	11. 2%
	Mayfield Woods MS	521	88.7\%
		587	100\%
Bollman Bridge ES	Patuxent Valley MS	556	100.0\%
		556	100\%
Bryant Woods ES	Wilde Lake MS	389	100.0\%
		389	100\%
Bushy Park ES	Folly Quarter MS	132	20.0\%
	Glenwood MS	527	79.9\%
		659	100\%
Centennial Lane ES	Burleigh Manor MS	617	100.0\%
		617	100\%
Clarksville ES	Clarksville MS	781	100.0\%
	Folly Quarter MS	0	0.0\%
		781	100\%
Clemens Crossing ES	Harpers Choice MS	102	25.6\%
	Wilde Lake MS	295	74.3\%
		397	100\%
Cradlerock ES	Cradlerock MS	453	100.0\%
		453	100\%
Dayton Oaks ES	Folly Quarter MS	350	43.8\%
	Lime Kiln MS	449	56.2\%
		799	100\%
Deep Run ES	Mayfield Woods MS	405	78.3\%
	Patuxent Valley MS	112	21.6\%
		517	100\%
Elkridge ES	Elkridge Landing MS	688	100.0\%
		688	100\%
Forest Ridge ES	Murray Hill MS	278	47.2\%
	Patuxent Valley MS	311	52.8\%
		589	100\%
Fulton ES	Hammond MS	190	41.3\%
	Lime Kiln MS	270	58.7\%
		460	100\%
Gorman Crossing ES	Hammond MS	85	16.0\%
	Murray Hill MS	446	83.9\%
		531	100\%
Guilford ES	Cradlerock MS	157	39.7\%
	Patuxent Valley MS	238	60.2\%
		395	100\%
Hammond ES	Hammond MS	450	100.0\%
	Murray Hill MS	0	0.0\%
		450	100\%

Bonnie Branch MS	Bellows Spring ES	28	4.1\%
	Ilchester ES	348	51.3\%
	Jeffers Hill ES	11	1.6\%
	Phelps Luck ES	185	27.2\%
	Rockburn ES	106	15.6\%
		678	100\%
Burleigh Manor MS	Centennial Lane ES	418	61.3\%
	Manor Woods ES	154	22.6\%
	Northfield ES	109	16.0\%
		681	100\%
Clarksville MS	Clarksville ES	500	68.9\%
	Pointers Run ES	225	31.0\%
		725	100\%
Cradlerock MS	Cradlerock ES	233	50.6\%
	Guilford ES	70	15.2\%
	Jeffers Hill ES	99	21.5\%
	Talbott Springs ES	58	12.6%
		460	100%
Dunloggin MS	Northfield ES	229	44.3\%
	Thunder Hill ES	29	5.6\%
	Veterans ES	258	50.0\%
		516	100\%
Elkridge Landing MS	Elkridge ES	408	65.0\%
	Rockburn ES	219	34.9\%
		627	100\%
Ellicott Mills MS		7	1. 0%
	Thunder Hill ES	90	13.6\%
	Veterans ES	192	29.0\%
	Waterloo ES	179	27.1\%
	Worthington ES	192	29.0\%
		660	100\%
Folly Quarter MS		81	13.8%
	Clarksville ES	0	0.0%
	Dayton Oaks ES	244	41.7\%
	Triadelphia Ridge ES	260	$44 \text {. 4\% }$
		585	100\%
Glenwood MS	Bushy Park ES	320	48.4\%
	Lisbon ES	340	51.5\%
		660	100\%
Hammond MS	Atholton ES	118	19.0\%
	Fulton ES	120	19.3\%
	Gorman Crossing ES	74	11.9\%
	Hammond ES	309	49.7\%
		621	100\%
Harpers Choice MS	Clemens Crossing ES	66	
	Longfellow ES	204	37.2\%
	Swansfield ES	278	50.7\%
		548	100\%
Lime Kiln MS	Dayton Oaks ES	302	47.1\%
	Fulton ES	144	22.5\%
	Pointers Run ES	194	30.3\%
		640	100\%

Bonnie Branch MS	Howard HS	552	81.4\%
	Long Reach HS	126	18.5\%
		678	100\%
Burleigh Manor MS	Centennial HS	530	77.8\%
	Marriotts Ridge HS	151	22.1\%
		681	100\%
Clarksville MS	Atholton HS	285	39.3\%
	River Hill HS	440	60.6\%
		725	100\%
Cradlerock MS	Hammond HS	55	11.9\%
	Oakland Mills HS	405	88.0\%
		460	100\%
Dunloggin MS	Centennial HS	186	36.0\%
	Mt Hebron HS	190	36.8\%
	Wilde Lake HS	140	27.1\%
		516	100\%
Elkridge Landing MS	Howard HS	370	59.0\%
	Long Reach HS	257	40.9\%
		627	100\%
Ellicott Mills MS	Centennial HS	257	38.9\%
	Howard HS	210	31.8\%
	Mt Hebron HS	193	29.2\%
		660	100\%
Folly Quarter MS	Glenelg HS	245	41.8\%
	Marriotts Ridge HS	63	10.7\%
	River Hill HS	277	47.3\%
		585	100\%
Glenwood MS	Glenelg HS	660	100.0\%
		660	100\%
Hammond MS	Atholton HS	157	25.2\%
	Hammond HS	187	30.1\%
	Reservoir HS	277	44.6\%
		621	100\%
Harpers Choice MS	Wilde Lake HS	548	100.0\%
		548	100\%
Lime Kiln MS	Atholton HS	224	35. 0\%
	Reservoir HS	139	21.7\%
	River Hill HS	277	43.2\%
		640	100\%
Mayfield Woods MS	Howard HS	0	0.0\%
	Long Reach HS	586	90.0\%
	Oakland Mills HS	65	9.9\%
		651	100\%
Mount View MS	Marriotts Ridge HS	716	100.0\%
		716	100\%
Murray Hill MS	Atholton HS	81	12.1\%
	Hammond HS	12	1.7\%
	Reservoir HS	576	86.1\%
		669	100\%

Grades: 9101112

Atholton HS	Bryant Woods ES	161	11.8\%
	Clarksville ES	181	13.3\%
	Clemens Crossing ES	270	19.9\%
	Dayton Oaks ES	60	4.4\%
	Fulton ES	3	0.2\%
	Gorman Crossing ES	81	5.9\%
	Hammond ES	194	14.3\%
	Pointers Run ES	404	29.8\%
		1354	100\%
Centennial HS	Centennial Lane ES	594	39.6\%
	Manor Woods ES	6	0.4\%
	Northfield ES	363	24.2\%
	Veterans ES	439	29.2\%
	Waterloo ES	98	6.5\%
		1500	100\%
Glenelg HS	Bushy Park ES	531	43.5\%
	Dayton Oaks ES	90	7.3\%
	Lisbon ES	473	38.7\%
	Triadelphia Ridge ES	126	10.3\%
		1220	100\%
Hammond HS	Atholton ES	209	15.9\%
	Bollman Bridge ES	471	35.8\%
	Deep Run ES	90	6.8%
	Forest Ridge ES	176	13.3\%
	Guilford ES	262	19.9\%
	Hammond ES	106	8.0\%
		1314	100\%
Howard HS	Elkridge ES	292	21.1\%
	Ilchester ES	366	26.4\%
	Jeffers Hill ES	23	1.6\%
	Phelps Luck ES	188	13.5\%
	Rockburn ES	249	18.0\%
	Thunder Hill ES	113	8.1\%
	Waterloo ES	152	10.9\%
		1383	100\%
Long Reach HS	Bellows Spring ES	238	18.8\%
	Deep Run ES	316	25.0\%
	Elkridge ES	184	14.5\%
	Ilchester ES	35	2.7\%
	Jeffers Hill ES	82	6.5\%
	Phelps Luck ES	173	13.7\%
	Rockburn ES	107	8.4\%
	Waterloo ES	126	9.9\%
		1261	100\%
Marriotts Ridge HS	Manor Woods ES	469	36.3\%
	Triadelphia Ridge ES	86	6.6\%
	Waverly ES	358	27.7\%
	West Friendship ES	377	29.2\%
		1290	100\%
Mt Hebron HS	Hollifield Station ES	367	26.0\%
	St Johns Lane ES	569	40.4\%
	Veterans ES	236	16.7\%
	Worthington ES	235	16.7\%
		1407	100\%
Oakland Mills HS	Atholton ES	73	5.5\%
	Bellows Spring ES	54	4.1\%
	Cradlerock ES	326	24.9\%

\% of High from each Middle
Grades: 9101112

Atholton HS	Clarksville MS	354	26.1\%
	Hammond MS	194	14.3\%
	Lime Kiln MS	288	21.2\%
	Murray Hill MS	81	5.9\%
	Wilde Lake MS	437	32.2\%
		1354	100\%
Centennial HS	Burleigh Manor MS	786	52.4\%
	Dunloggin MS	304	20.2\%
	Ellicott Mills MS	410	27.3\%
		1500	100\%
Glenelg HS	Folly Quarter MS	351	28.7\%
	Glenwood MS	869	71.2\%
		1220	100\%
Hammond HS	Cradlerock MS	84	6.3\%
	Hammond MS	252	19.1\%
	Murray Hill MS	22	1.6\%
	Patuxent Valley MS	956	72.7\%
		1314	100\%
Howard HS	Bonnie Branch MS	683	49.3\%
	Elkridge Landing MS	421	30.4\%
	Ellicott Mills MS	276	19.9\%
	Mayfield Woods MS	3	0.2\%
		1383	100\%
Long Reach HS	Bonnie Branch MS	165	13.0\%
	Elkridge Landing MS	291	23.0\%
	Mayfield Woods MS	805	63.8\%
		1261	100\%
Marriotts Ridge HS	Burleigh Manor MS	172	13.3\%
	Folly Quarter MS	86	6.6\%
	Mount View MS	1032	80.0\%
		1290	100\%
Mt Hebron HS	Dunloggin MS	235	16.7\%
	Ellicott Mills MS	236	16.7\%
	Patapsco MS	936	66.5\%
		1407	100\%
Oakland Mills HS	Cradlerock MS	598	45.7\%
	Mayfield Woods MS	80	6.1\%
	Oakland Mills MS	628	48.0\%
		1306	100\%
Reservoir HS	Hammond MS	434	30.2\%
	Lime Kiln MS	154	10.7\%
	Murray Hill MS	848	59.0\%
		1436	100\%
River Hill HS	Clarksville MS	599	44.1\%
	Folly Quarter MS	366	26.9\%
	Lime Kiln MS	391	28.8\%
		1356	100\%
Wilde Lake HS	Dunloggin MS	180	12.8\%
	Harpers Choice MS	863	61.3\%
	Wilde Lake MS	363	25.8\%
		1406	100\%

```
HS Redistricting Effects Report for 2010
    Plan: fs200813
Capital Improvement Plan in Use: SCHOOLS
```

Glenelg HS

Howard HS

Proj. Capacity:1332 Before Redistricting:Proj. Enrollment:1466 Proj. Util.:110.1\%

Proj. Capacity:1332 Before Redistricting:Proj. Enrollment:1503 Proj. Util.: 112.8\%
Totals for Centennial HS 0 Net change: 0
After Redistricting: Proj. Enrollment:1503 Proj. Util.: 112.8\%

Proj. Capacity:1332 Before Redistricting:Proj. Enrollment:1248 Proj. Util.: 93.7\%

		Plan ID	Gain	LoSS	
From River Hill HS	205	12			
From River Hill HS	206	13			
From River Hill HS	207	12			
From River Hill HS	208	4			
From River Hill HS	1205	50			
From River Hill HS	1206	28			
From River Hill HS	1207	30			
From River Hill HS	1208	12			
From River Hill HS	2205	23			
Total From River Hill HS	$\mathbf{1 8 4}$		Net change:	$\mathbf{1 8 4}$	

After Redistricting: Proj. Enrollment:1432 Proj. Util.:107.5\%

Proj. Capacity:1332 Before Redistricting:Proj. Enrollment:1274 Proj. Util.: 95.6\%
Totals for Hammond HS 0 0 Net change: 0 After Redistricting: Proj. Enrollment:1274 Proj. Util.: 95.6\%

Proj. Capacity:1332 Before Redistricting:Proj. Enrollment:1538 Proj. Util.: 115.5\%

After Redistricting: Proj. Enrollment:1486 Proj. Util.: 111.6\%

Proj. Capacity:1332 Before Redistricting:Proj. Enrollment:1309 Proj. Util.: 98.3\%

		$\frac{\text { Plan ID }}{42}$	$\frac{\text { Gain }}{52}$	Loss
From Howard HS				
Total From Howard HS				52

Bonnie Branch MS

Cap:	2009		2010		2011		2012		2013				2015		2016		2017		2018		2019		2020		2021
		62		2		2		62		62		2		62		62		62		62		62		62	662
	BEF.	AFT.	BEF. AF																						
Enr	701	701	689	689	700	700	681	681	702	702	694	694	718	718	705	705	725	725	731	731	750	750	764	764	77477

105.9\% 105.9\%		

Burleigh Manor MS

20092010

2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	6021
662	662	662	662	662	662	662	662	662		
$B E F$.	$A F T$.	$B E F$.	BEF. AFT. 662 Enr: $\begin{array}{lllll}673 & 673 & 658 & 658\end{array}$ Util: 101.7\% 101.7\% 99.4\% 99.4\% $94.4 \% \quad 94.4 \%$ 649 649 EF. AFT. BEF. AFT. BEF. AFT. BEF. AFT. BEF AFT Clarksville MS							

Dunloggin MS

Cap:	2009		2010			
				26		
	BEF	AFT	BEF	AFT		
Enr	501	501	511	511		
Util:	95.2\%	95.2\%	97.1\%	97.1\%		
Elkridge Landing MS 20092010						

```
cap:
```

662 2010 BEF. AFT. BEF. AFT.

2011	2012
662	662

2013
662
2014
662
2015
662
2016
662
20172018
2019
\qquad2021

 $\begin{array}{llllllllll}810 & 810 & 827 & 827 & 840 & 840 & 858 & 858 & 851 & 851\end{array}$

Excluding Kindergarten
2008200920102011201220132014201520162017201820192020
$\begin{array}{lllllllllllll}321 & 321 & 321 & 321 & 321 & 321 & 321 & 321 & 321 & 321 & 321 & 321 & 321\end{array}$ $\begin{array}{lllllllllllll}552 & 552 & 552 & 552 & 552 & 552 & 552 & 552 & 552 & 552 & 552 & 552 & 552\end{array}$ 478478478478478478478478478478478478478 289289289289289289289289289289289289289 $\begin{array}{llllllllllll}678 & 678 & 678 & 678 & 678 & 678 & 678 & 678 & 678 & 678 & 678 & 678 \\ 678\end{array}$ $540540540540540540540540 \quad 540540540540540$ $\begin{array}{lllllllllllll}546 & 546 & 546 & 546 & 546 & 546 & 546 & 546 & 546 & 546 & 546 & 546 & 546\end{array}$ $\begin{array}{lllllllllllll}434 & 434 & 434 & 434 & 434 & 434 & 434 & 434 & 434 & 434 & 434 & 434 & 434\end{array}$ $\begin{array}{lllllllllllll}421 & 421 & 421 & 421 & 421 & 421 & 421 & 421 & 421 & 421 & 421 & 421 & 421\end{array}$ 678678678678678678678678678678678678678 4914914914914914914914914914914914914991 647647647647647647647647647647647647647 $\begin{array}{lllllllllllllll}516 & 516 & 516 & 516 & 516 & 516 & 516 & 516 & 516 & 516 & 516 & 516 & 516\end{array}$ 640640640640640640640640640640640640640 $\begin{array}{lllllllllllll}452 & 452 & 452 & 452 & 452 & 452 & 452 & 452 & 452 & 452 & 452 & 452 & 452\end{array}$ $\begin{array}{lllllllllllll}396 & 396 & 396 & 396 & 396 & 396 & 396 & 396 & 396 & 396 & 396 & 396 & 396\end{array}$ 434434434434434434434434434434434434434 $\begin{array}{lllllllllllll}578 & 578 & 578 & 578 & 578 & 578 & 578 & 578 & 578 & 578 & 578 & 578 & 578\end{array}$ 529529529529529529529529529529529529529 $\begin{array}{llllllllllllll}377 & 377 & 377 & 377 & 377 & 377 & 377 & 377 & 377 & 377 & 377 & 377 & 377\end{array}$ $\begin{array}{llllllllllllll}452 & 452 & 452 & 452 & 452 & 452 & 452 & 452 & 452 & 452 & 452 & 452 & 452\end{array}$ 465465465465465465465465465465465465465 $\begin{array}{lllllllllllllllllll}352 & 352 & 352 & 352 & 352 & 352 & 352 & 352 & 352 & 352 & 352 & 352 & 352\end{array}$ 559559559559559559559559559559559559559 $\begin{array}{lllllllllllll}434 & 584 & 584 & 584 & 584 & 584 & 584 & 584 & 584 & 584 & 584 & 584 & 584\end{array}$ $\begin{array}{lllllllllllll}452 & 452 & 452 & 452 & 452 & 452 & 452 & 452 & 452 & 452 & 452 & 452 & 452\end{array}$ 666666666666666666666666666666666666666 $\begin{array}{lllllllllllll}535 & 535 & 535 & 535 & 535 & 535 & 535 & 535 & 535 & 535 & 535 & 535 & 535\end{array}$ $\begin{array}{lllllllllllllllll}339 & 339 & 339 & 339 & 339 & 339 & 339 & 339 & 339 & 339 & 339 & 339 & 339\end{array}$ 509509509509509509509509509509509509509 $\begin{array}{lllllllllllllll}289 & 289 & 289 & 289 & 289 & 289 & 289 & 289 & 289 & 289 & 289 & 289 & 289\end{array}$ 440440440440440440440440440440440440440 $\begin{array}{llllllllllllll}377 & 377 & 377 & 377 & 377 & 377 & 377 & 377 & 377 & 377 & 377 & 377 & 377\end{array}$ 302302302302302302302302302302302302302 $\begin{array}{lllllllllllll}434 & 434 & 434 & 434 & 434 & 434 & 434 & 434 & 434 & 434 & 434 & 434 & 434\end{array}$ $\begin{array}{lllllllllll}678 & 678 & 678 & 678 & 678 & 678 & 678 & 678 & 678 & 678 & 678 \\ 678 & 678\end{array}$ 484484484484484484484484484484484484484 665665665665665665665665665665665656565 302302302302302302302302302302302302302 403403403403403403403403403403403403403

Including Kindergarten
2008200920102011201220132014201520162017201820192020 $\begin{array}{lllllllllllll}387 & 387 & 387 & 387 & 387 & 387 & 387 & 387 & 387 & 387 & 387 & 387 & 387\end{array}$ 662662662662662662662662662662662662662 $\begin{array}{lllllllllllll}566 & 566 & 566 & 566 & 566 & 566 & 566 & 566 & 566 & 566 & 566 & 566 & 566\end{array}$ 355355355355355355355355355355355355355 $\begin{array}{lllllllllllll}788 & 788 & 788 & 788 & 788 & 788 & 788 & 788 & 788 & 788 & 788 & 788 & 788\end{array}$ 628628628628628628628628628628628628628 $\begin{array}{llllllllllll}634 & 634 & 634 & 634 & 634 & 634 & 634 & 634 & 634 & 634 & 634 & 634 \\ 634\end{array}$ $\begin{array}{lllllllllllll}522 & 522 & 522 & 522 & 522 & 522 & 522 & 522 & 522 & 522 & 522 & 522 & 522\end{array}$ $\begin{array}{llllllllllllll}487 & 487 & 487 & 487 & 487 & 487 & 487 & 487 & 487 & 487 & 487 & 487 & 487\end{array}$ $\begin{array}{lllllllllllll}788 & 788 & 788 & 788 & 788 & 788 & 788 & 788 & 788 & 788 & 788 & 788 & 788\end{array}$ 601601601601601601601601601601601601601 $\begin{array}{lllllllllllll}779 & 779 & 779 & 779 & 779 & 779 & 779 & 779 & 779 & 779 & 779 & 779 & 779\end{array}$ $\begin{array}{lllllllllllll}626 & 626 & 626 & 626 & 626 & 626 & 626 & 626 & 626 & 626 & 626 & 626 & 626\end{array}$
 $540540540540540540 \quad 540 \quad 540 \quad 540 \quad 540 \quad 540$ $\begin{array}{lllllllllllll}462 & 462 & 462 & 462 & 462 & 462 & 462 & 462 & 462 & 462 & 462 & 462 & 462\end{array}$ 500500500500500500500500500500500500500 $\begin{array}{llllllllllll}688 & 688 & 688 & 688 & 688 & 688 & 688 & 688 & 688 & 688 & 688 & 688 \\ 688\end{array}$ 617617617617617617617617617617617617617 $\begin{array}{lllllllllllll}421 & 421 & 421 & 421 & 421 & 421 & 421 & 421 & 421 & 421 & 421 & 421 & 421\end{array}$ $\begin{array}{lllllllllllll}540 & 540 & 540 & 540 & 540 & 540 & 540 & 540 & 540 & 540 & 540 & 540 & 540\end{array}$ 553553553553553553553553553553553553553 $\begin{array}{lllllllllllll}418 & 418 & 418 & 418 & 418 & 418 & 418 & 418 & 418 & 418 & 418 & 418 & 418\end{array}$ 647647647647647647647647647647647647647 $\begin{array}{lllllllllllll}522 & 672 & 672 & 672 & 672 & 672 & 672 & 672 & 672 & 672 & 672 & 672 & 672\end{array}$ $\begin{array}{llllllllllllll}540 & 540 & 540 & 540 & 540 & 540 & 540 & 540 & 540 & 540 & 540 & 540 & 540\end{array}$ $\begin{array}{llllllllllllllllllllllll}776 & 776 & 776 & 776 & 776 & 776 & 776 & 776 & 776 & 776 & 776 & 776 & 776\end{array}$ $\begin{array}{llllllllllllll}667 & 667 & 667 & 667 & 667 & 667 & 667 & 667 & 667 & 667 & 667 & 667 & 667\end{array}$ 405405405405405405405405405405405405405 $\begin{array}{lllllllllllll}597 & 597 & 597 & 597 & 597 & 597 & 597 & 597 & 597 & 597 & 597 & 597 & 597\end{array}$ $\begin{array}{llllllllllllll}333 & 333 & 333 & 333 & 333 & 333 & 333 & 333 & 333 & 333 & 333 & 333 & 333\end{array}$ 528528528528528528528528528528528528528 $\begin{array}{lllllllllllll}443 & 443 & 443 & 443 & 443 & 443 & 443 & 443 & 443 & 443 & 443 & 443 & 443\end{array}$ $\begin{array}{lllllllllllll}368 & 368 & 368 & 368 & 368 & 368 & 368 & 368 & 368 & 368 & 368 & 368 & 368\end{array}$ $\begin{array}{lllllllllllll}544 & 544 & 544 & 544 & 544 & 544 & 544 & 544 & 544 & 544 & 544 & 544 & 544\end{array}$ $\begin{array}{lllllllllllll}788 & 788 & 788 & 788 & 788 & 788 & 788 & 788 & 788 & 788 & 788 & 788 & 788\end{array}$ 594594594594594594594594594594594594594 $\begin{array}{llllllllllllllll}775 & 775 & 775 & 775 & 775 & 775 & 775 & 775 & 775 & 775 & 775 & 775 & 775\end{array}$ $\begin{array}{lllllllllllllllllllll}368 & 368 & 368 & 368 & 368 & 368 & 368 & 368 & 368 & 368 & 368 & 368 & 368\end{array}$ 491491491491491491491491491491491491491
Bonnie Branch MS
2008200920102011201220132014201520162017201820192020
662662662662662662662662662662662662662
662662662662662662662662662662662662662
662662662662662662662662662662662662662
$\begin{array}{lllllllllllll}584 & 584 & 584 & 584 & 584 & 584 & 584 & 584 & 584 & 584 & 584 & 584 & 584\end{array}$
526526526526526526526526526526526526526
662662662662662662662662662662662662662
$\begin{array}{lllllllllllllllllll}662 & 662 & 662 & 662 & 662 & 662 & 662 & 662 & 662 & 662 & 662 & 662 & 662\end{array}$
662662662662662662662662662662662662662
584584584584584584584584584584584584584
$\begin{array}{lllllllllllll}584 & 584 & 584 & 584 & 584 & 584 & 584 & 584 & 584 & 584 & 584 & 584 & 584\end{array}$
506506506506506506506506506506506506506
701701701701701701701701701701701701701
682682682682682682682682682682682682682
662662662662662662662662662662662662662
$\begin{array}{llllllllllll}662 & 662 & 662 & 662 & 662 & 662 & 662 & 662 & 662 & 662 & 662 & 662 \\ 662\end{array}$
$0 \quad 0 \quad 0 \quad 0662662662662662662662662662$
506506506506506506506506506506506506506
$\begin{array}{lllllllllll}662 & 662 & 662 & 662 & 662 & 662 & 662 & 662 & 662 & 662 & 662 \\ 662 & 662\end{array}$
662662662662662662662662662662662662662 506506506506506506506506506506506506506 Hammond HS Howard HS Long Reach HS Marriotts Ridge Mt Hebron H Oakland Mills HS Reservoir HS River Hill HS Wilde Lake HS

2008200920102011201220132014201520162017201820192020 1332133213321332133213321332133213321332133213321332 1332133213321332133213321332133213321332133213321332 1332133213321332133213321332133213321332133213321332 1332133213321332133213321332133213321332133213321332 1332133213321332133213321332133213321332133213321332 1332133213321332133213321332133213321332133213321332 1332133213321332133213321332133213321332133213321332 1332133213321332133213321332133213321332133213321332 1332133213321332133213321332133213321332133213321332 1332133213321332133213321332133213321332133213321332 1332133213321332133213321332133213321332133213321332 1332133213321332133213321332133213321332133213321332

